将pandas数据框与密钥重复项

时间:2016-11-13 15:26:16

标签: python pandas dataframe merge

我有2个数据帧,两个都有一个可能有重复的键列,但数据帧大多数都有相同的重复键。我希望将这些数据帧合并到该密钥上,但是当两者具有相同的副本时,这些重复项将分别合并。此外,如果一个数据帧的密钥重复多于另一个,我希望它的值可以填充为NaN。例如:

df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K2', 'K2', 'K3'],
                    'A':   ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}, 
                   columns=['key', 'A'])
df2 = pd.DataFrame({'B':   ['B0', 'B1', 'B2', 'B3', 'B4', 'B5', 'B6'],
                    'key': ['K0', 'K1', 'K2', 'K2', 'K3', 'K3', 'K4']}, 
                   columns=['key', 'B'])

  key   A
0  K0  A0
1  K1  A1
2  K2  A2
3  K2  A3
4  K2  A4
5  K3  A5

  key   B
0  K0  B0
1  K1  B1
2  K2  B2
3  K2  B3
4  K3  B4
5  K3  B5
6  K4  B6

我试图获得以下输出

   key    A   B
0   K0   A0  B0
1   K1   A1  B1
2   K2   A2  B2
3   K2   A3  B3
6   K2   A4  NaN
8   K3   A5  B4
9   K3  NaN  B5
10  K4  NaN  B6

所以基本上,我希望将重复的K2密钥视为K2_1,K2_2,...然后执行how ='外部'合并数据帧。 我有什么想法可以做到这一点?

1 个答案:

答案 0 :(得分:5)

再次更快

%%cython
# using cython in jupyter notebook
# in another cell run `%load_ext Cython`
from collections import defaultdict
import numpy as np

def cg(x):
    cnt = defaultdict(lambda: 0)

    for j in x.tolist():
        cnt[j] += 1
        yield cnt[j]


def fastcount(x):
    return [i for i in cg(x)]

df1['cc'] = fastcount(df1.key.values)
df2['cc'] = fastcount(df2.key.values)

df1.merge(df2, how='outer').drop('cc', 1)

更快的答案;不可扩展

def fastcount(x):
    unq, inv = np.unique(x, return_inverse=1)
    m = np.arange(len(unq))[:, None] == inv
    return (m.cumsum(1) * m).sum(0)

df1['cc'] = fastcount(df1.key.values)
df2['cc'] = fastcount(df2.key.values)

df1.merge(df2, how='outer').drop('cc', 1)

旧答案

df1['cc'] = df1.groupby('key').cumcount()
df2['cc'] = df2.groupby('key').cumcount()

df1.merge(df2, how='outer').drop('cc', 1)

enter image description here