我有一个数据框,其中包含重复样本的样本列(以_2结尾)和一个相同的列,详细说明哪一个是原始样本。新类别包含一种突变类型,其中致病性/可能致病性是最具破坏性的,而可能性良性是最具破坏性的。下面演示了我的数据帧的简化版/基本版。
df = pd.DataFrame(columns=['Sample', 'same','New Category'],
data=[
['HG_12_34', 'HG_12_34', 'Pathogenic/Likely Pathogenic'],
['HG_12_34_2', 'HG_12_34', 'Likely Benign'],
['KD_89_9', 'KD_89_9', 'Likely Benign'],
['KD_98_9_2', 'KD_89_9', 'Likely Benign'],
['LG_3_45', 'LG_3_45', 'Likely Benign'],
['LG_3_45_2', 'LG_3_45', 'VUS']
])
我想有条件地删除样本或其副本,具体取决于新类别中具有最小破坏性突变的那个,即如果一个样本具有可能良性并且副本具有致病性/ Likley致病变异那么我想要删除/删除样本行。
我尝试将数据帧传递给一个函数,该函数返回一个代表要删除的行的索引列表,然后我将它们删除了。
def get_unwanted_duplicates_ix(df):
# filter df for samples that have a duplicate
same_only = df.groupby("same").filter(lambda x: len(x) > 1)
list_index_to_delete = []
for num in range(0,same_only.shape[0]-1):
row1 = same_only.irow(num)
row2 = same_only.irow(num+1)
index = list(same_only.index.values)[num]
if row1['Sample']+"_2" == row2['Sample'] or \
row1['Sample'] == row2['Sample']+"_2":
if row1['New Category'] == row2['New Category']:
list_index_to_delete.append(index+1)
elif row1['New Category'] == "Pathogenic/Likely Pathogenic" \
and row2['New Category'] != "Pathogenic/Likely Pathogenic":
list_index_to_delete.append(index+1)
elif row2['New Category'] == "Pathogenic/Likely Pathogenic" \
and row1['New Category'] != "Pathogenic/Likely Pathogenic":
list_index_to_delete.append(index)
elif row1['New Category'] == "VUS" \
and row2['New Category'] != "VUS":
list_index_to_delete.append(index+1)
elif row2['New Category'] == "VUS" \
and row1['New Category'] != "VUS":
list_index_to_delete.append(index)
elif row1['New Category'] == 'Likely Benign' \
and row2['New Category'] == 'Likely Benign':
list_index_to_delete.append(index+1)
else:
list_index_to_delete.append(index+1)
return list_index_to_delete
unwanted = get_unwanted_duplicates_ix(df)
df = df.drop(df.index[unwanted])
上述功能是一团糟,并且不出所料,不能像我希望的那样发挥作用。正确的方向上的一点将是最受欢迎的。
答案 0 :(得分:2)
首先,用整数替换突变严重性(更高的值意味着更具破坏性)。
df['New Category code'] = df['New Category'].replace(
{'Likely Benign': 1, 'VUS': 2, 'Pathogenic/Likely Pathogenic': 3})
下一个命令取决于您是否要保留多个具有相同严重性的行。如果是,则按same
列分组,并选择具有最高严重性代码的行:
df[df.groupby('same')['New Category code'].transform(max) == df['New Category code']]
Sample same New Category New Category code
0 HG_12_34 HG_12_34 Pathogenic/Likely Pathogenic 3
2 KD_89_9 KD_89_9 Likely Benign 1
3 KD_98_9_2 KD_89_9 Likely Benign 1
5 LG_3_45_2 LG_3_45 VUS 2
如果不是(每个组中始终只保留一行),则改为按严重性升序排序值,并取每组中的最后一行(感谢@JonClements的想法):
df.sort_values('New Category code').groupby('same').last()
Sample New Category New Category code
same
HG_12_34 HG_12_34 Pathogenic/Likely Pathogenic 3
KD_89_9 KD_98_9_2 Likely Benign 1
LG_3_45 LG_3_45_2 VUS 2