我正在尝试启动一个集群,该集群将从谷歌云存储流式传输文件(换行新行的JSON),并在从MongoDB获取数据后转换每一行。转换行后,我想将它存储在Google的bigquery中 - 一次10000行。所有这一切都运行正常,但问题是流处理文件的处理速率会随着时间的推移而显着下降。
我在一台服务器上设置了节点应用程序,在另一台服务器上设置了mongodb。 8核心机器均配备30GB RAM。执行脚本时,最初应用程序服务器和mongodb服务器的CPU使用率约为70%-75%。 30分钟后,CPU使用率降至10%,最后降至1%。应用程序不会生成异常。我可以看到应用程序日志,发现它已经完成了处理几个文件并占用了新文件进行处理。一次执行可以在晚于下午3:00和几乎到下午5:20之后观察到。
var cluster = require('cluster'),
os = require('os'),
numCPUs = os.cpus().length,
async = require('async'),
fs = require('fs'),
google = require('googleapis'),
bigqueryV2 = google.bigquery('v2'),
gcs = require('@google-cloud/storage')({
projectId: 'someproject',
keyFilename: __dirname + '/auth.json'
}),
dataset = bigquery.dataset('somedataset'),
bucket = gcs.bucket('somebucket.appspot.com'),
JSONStream = require('JSONStream'),
Transform = require('stream').Transform,
MongoClient = require('mongodb').MongoClient,
mongoUrl = 'mongodb://localhost:27017/bigquery',
mDb,
groupA,
groupB;
var rows = [],
rowsLen = 0;
function transformer() {
var t = new Transform({ objectMode: true });
t._transform = function(row, encoding, cb) {
// Get some information from mongodb and attach it to the row
if (row) {
groupA.findOne({
'geometry': { $geoIntersects: { $geometry: { type: 'Point', coordinates: [row.lon, row.lat] } } }
}, {
fields: { 'properties.OA_SA': 1, _id: 0 }
}, function(err, a) {
if (err) return cb();
groupB.findOne({
'geometry': { $geoIntersects: { $geometry: { type: 'Point', coordinates: [row.lon, row.lat] } } }
}, {
fields: { 'properties.WZ11CD': 1, _id: 0 }
}, function(err, b) {
if (err) return cb();
row.groupA = a ? a.properties.OA_SA : null;
row.groupB = b ? b.properties.WZ11CD : null;
// cache processed rows in memory
rows[rowsLen++] = { json: row };
if (rowsLen >= 10000) {
// batch insert rows in bigquery table
// and free memory
log('inserting 10000')
insertRowsAsStream(rows.splice(0, 10000));
rowsLen = rows.length;
}
cb();
});
});
} else {
cb();
}
};
return t;
}
var log = function(str) {
console.log(str);
}
function insertRowsAsStream(rows, callback) {
bigqueryV2.tabledata.insertAll({
"projectId": 'someproject',
"datasetId": 'somedataset',
"tableId": 'sometable',
"resource": {
"kind": "bigquery#tableDataInsertAllRequest",
"rows": rows
}
}, function(err, res) {
if (res && res.insertErrors && res.insertErrors.length) {
console.log(res.insertErrors[0].errors)
err = err || new Error(JSON.stringify(res.insertErrors));
}
});
}
function startStream(fileName, cb) {
// stream a file from Google cloud storage
var file = bucket.file(fileName),
called = false;
log(`Processing file ${fileName}`);
file.createReadStream()
.on('data', noop)
.on('end', function() {
if (!called) {
called = true;
cb();
}
})
.pipe(JSONStream.parse())
.pipe(transformer())
.on('finish', function() {
log('transformation ended');
if (!called) {
called = true;
cb();
}
});
}
function processFiles(files, cpuIdentifier) {
if (files.length == 0) return;
var fn = [];
for (var i = 0; i < files.length; i++) {
fn.push(function(cb) {
startStream(files.pop(), cb);
});
}
// process 3 files in parallel
async.parallelLimit(fn, 3, function() {
log(`child process ${cpuIdentifier} completed the task`);
fs.appendFile(__dirname + '/complete_count.txt', '1');
});
}
if (cluster.isMaster) {
for (var ii = 0; ii < numCPUs; ii++) {
cluster.fork();
}
} else {
MongoClient.connect(mongoUrl, function(err, db) {
if (err) throw (err);
mDb = db;
groupA = mDb.collection('groupageo');
groupB = mDb.collection('groupbgeo');
processFiles(files, process.pid);
// `files` is an array of file names
// each file is in newline json delimited format
// ["1478854974993/000000000000.json","1478854974993/000000000001.json","1478854974993/000000000002.json","1478854974993/000000000003.json","1478854974993/000000000004.json","1478854974993/000000000005.json"]
});
}
答案 0 :(得分:0)
好的,我找到了罪魁祸首! Google API Node.js客户端库使用名为“stream-events”的模块来实现Streams 0.8。 Streams 0.8不会根据消费者使用数据的能力来控制它发出“数据”事件的速率。速率控制功能在Streams 1.0中引入。所以这实际上意味着可读流以无法处理的速率向MongoDB投放数据。
解决方案: 我使用了'request'模块而不是Google的客户端库。我向请求模块提供了一个签名的URL,后者又将结果作为流传输到我的变换器中。
带走: 请务必检查用于其所用流版本的模块。