我已经在python中导入了nltk来计算Ubuntu上的BLEU分数。我理解句子级别的BLEU分数是如何运作的,但我不明白语料库级别的BLEU分数是如何运作的。
以下是我的语料库级BLEU分数代码:
DECLARE @roles int = 0
WHILE @roles < 10 --assuming that you have **10 roles** to insert
BEGIN
INSERT INTO Roles(MenuId, RoleId)
SELECT MenuId, @roles --it's a roleId you want to insert
FROM Menus m
SET @roles = @roles + 1
END
出于某种原因,上述代码的bleu得分为0。我期待BLEU语料库得分至少为0.5。
这是我的句子级BLEU分数代码
import nltk
hypothesis = ['This', 'is', 'cat']
reference = ['This', 'is', 'a', 'cat']
BLEUscore = nltk.translate.bleu_score.corpus_bleu([reference], [hypothesis], weights = [1])
print(BLEUscore)
考虑到简短惩罚和缺失的单词&#34; a&#34;这里的句子级BLEU分数是0.71。但是,我不明白语料库级别的BLEU分数是如何运作的。
任何帮助都将不胜感激。
答案 0 :(得分:17)
<强> TL; DR 强>:
>>> import nltk
>>> hypothesis = ['This', 'is', 'cat']
>>> reference = ['This', 'is', 'a', 'cat']
>>> references = [reference] # list of references for 1 sentence.
>>> list_of_references = [references] # list of references for all sentences in corpus.
>>> list_of_hypotheses = [hypothesis] # list of hypotheses that corresponds to list of references.
>>> nltk.translate.bleu_score.corpus_bleu(list_of_references, list_of_hypotheses)
0.6025286104785453
>>> nltk.translate.bleu_score.sentence_bleu(references, hypothesis)
0.6025286104785453
(注意:您必须在develop
分支上提取最新版本的NLTK才能获得稳定版本的BLEU分数实现)
长期:
实际上,如果整个语料库中只有一个引用和一个假设,则corpus_bleu()
和sentence_bleu()
都应返回与上例所示相同的值。
在代码中,我们看到sentence_bleu
is actually a duck-type of corpus_bleu
:
def sentence_bleu(references, hypothesis, weights=(0.25, 0.25, 0.25, 0.25),
smoothing_function=None):
return corpus_bleu([references], [hypothesis], weights, smoothing_function)
如果我们查看sentence_bleu
的参数:
def sentence_bleu(references, hypothesis, weights=(0.25, 0.25, 0.25, 0.25),
smoothing_function=None):
""""
:param references: reference sentences
:type references: list(list(str))
:param hypothesis: a hypothesis sentence
:type hypothesis: list(str)
:param weights: weights for unigrams, bigrams, trigrams and so on
:type weights: list(float)
:return: The sentence-level BLEU score.
:rtype: float
"""
sentence_bleu
引用的输入为list(list(str))
。
所以如果你有一个句子字符串,例如"This is a cat"
,您必须将其标记为获取字符串列表["This", "is", "a", "cat"]
,并且因为它允许多个引用,所以它必须是字符串列表的列表,例如如果你有第二个参考,“这是猫科动物”,你对sentence_bleu()
的输入将是:
references = [ ["This", "is", "a", "cat"], ["This", "is", "a", "feline"] ]
hypothesis = ["This", "is", "cat"]
sentence_bleu(references, hypothesis)
说到corpus_bleu()
list_of_references参数,它基本上是a list of whatever the sentence_bleu()
takes as references:
def corpus_bleu(list_of_references, hypotheses, weights=(0.25, 0.25, 0.25, 0.25),
smoothing_function=None):
"""
:param references: a corpus of lists of reference sentences, w.r.t. hypotheses
:type references: list(list(list(str)))
:param hypotheses: a list of hypothesis sentences
:type hypotheses: list(list(str))
:param weights: weights for unigrams, bigrams, trigrams and so on
:type weights: list(float)
:return: The corpus-level BLEU score.
:rtype: float
"""
除了查看nltk/translate/bleu_score.py
中的doctest之外,您还可以查看nltk/test/unit/translate/test_bleu_score.py
处的单元测试,了解如何使用bleu_score.py
中的每个组件。< / p>
顺便说一句,由于sentence_bleu
导入为bleu
(https://github.com/nltk/nltk/blob/develop/nltk/translate/init.py#L21)中的nltk.translate.__init__.py
,因此使用
from nltk.translate import bleu
与:
相同from nltk.translate.bleu_score import sentence_bleu
并在代码中:
>>> from nltk.translate import bleu
>>> from nltk.translate.bleu_score import sentence_bleu
>>> from nltk.translate.bleu_score import corpus_bleu
>>> bleu == sentence_bleu
True
>>> bleu == corpus_bleu
False
答案 1 :(得分:5)
我们来看看:
>>> help(nltk.translate.bleu_score.corpus_bleu)
Help on function corpus_bleu in module nltk.translate.bleu_score:
corpus_bleu(list_of_references, hypotheses, weights=(0.25, 0.25, 0.25, 0.25), smoothing_function=None)
Calculate a single corpus-level BLEU score (aka. system-level BLEU) for all
the hypotheses and their respective references.
Instead of averaging the sentence level BLEU scores (i.e. marco-average
precision), the original BLEU metric (Papineni et al. 2002) accounts for
the micro-average precision (i.e. summing the numerators and denominators
for each hypothesis-reference(s) pairs before the division).
...
你比我更了解算法的描述,所以我不会试图向你“解释”它。如果文档字符串不能清楚,请查看the source本身。或者在当地找到它:
>>> nltk.translate.bleu_score.__file__
'.../lib/python3.4/site-packages/nltk/translate/bleu_score.py'