我需要在薛定谔方程中更改我的绘图的缩放比例,y轴显示理论计算与我们的理论计算之间的差异,差异大约为0.01%。所以在情节我得到的规模不小,以显示差异。这是我项目的代码。
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 05 12:25:14 2016
@author: produce
"""
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
#
c = .5 / 500 # c = delta x
x = np.arange(0, .5, c) # creates array of argument values from 0 to 1/2 in increments
# of delta x = c
psi = np.zeros(len(x)) # creates array of zeros which will be replaced by y values
k = 20 # starting energy for calculator of E
ans = 0 # The value of k, when we have y as between 0.004 and 0
ansPsi = 0
diff = 0.001
increment = 0.0001
done = False
while 1:
# print k
psi[0] = 1
psi[1] = 1
for i in range(0, len(x) - 2):
psi[i + 2] = psi[i + 1] + (psi[i + 1] - psi[i]) - 2 * k * c * c * psi[i]
# plt.plot(x,psi)
# print(x,psi)
# print (psi[i+2]--->)
if (float(psi[i + 2]) < 0.004 and float(psi[i + 2]) > 0):
ans = k
ansPsi = psi[i + 2]
# print ("NOW ENTERING INNER LOOP")
while 1: # would be an infinite loop, but have a break statement
# k = k - 0.00001
k = k + increment
for i in range(0, len(x) - 2):
psi[i + 2] = psi[i + 1] + (psi[i + 1] - psi[i]) - 2 * k * c * c * psi[i]
plt.plot(x, psi, 'r') #red solid line
if (psi[i + 2] > ansPsi or psi[i + 2] < 0):
done = True
break
else:
ansPsi = psi[i + 2]
ans = k
# print (k, psi[i+2])
if done:
break
k = k - diff
print("Value of k:", ans, "Value of Y:", ansPsi) # prints our answer for energy and psi[1/2]
k1 = 10 # 1st Higher Energy Value
k2 = 7 # 2nd Higher Energy Value
k3 = 3 # 1st Lower Energy Value
k4 = 1 # 2nd Lower Energy Value
kt = np.pi * np.pi * .5 # theoretical value
psi1 = np.zeros(len(x))
psi1[0] = 1
psi1[1] = 1
for i in range(0, len(x) - 2):
psi1[i + 2] = psi1[i + 1] + (psi1[i + 1] - psi1[i]) - 2 * k1 * c * c * psi1[i]
# psi2 = np.zeros(len(x))
# psi2[0] = 1
# psi2[1] = 1
# for i in range (0,len(x)-2):
# psi2[i+2] = psi2[i+1] + (psi2[i+1] - psi2[i]) - 2*k2*c*c*psi2[i]
# plt.plot(x,psi2,'k')
# psi3 = np.zeros(len(x))
# psi3[0] = 1
# psi3[1] = 1
# for i in range (0,len(x)-2):
# psi3[i+2] = psi3[i+1] + (psi3[i+1] - psi3[i]) - 2*k3*c*c*psi3[i]
# plt.plot(x,psi3,'p')
psi4 = np.zeros(len(x))
psi4[0] = 1
psi4[1] = 1
for i in range(0, len(x) - 2):
psi4[i + 2] = psi4[i + 1] + (psi4[i + 1] - psi4[i]) - 2 * k4 * c * c * psi4[i]
plt.plot(x, psi, 'r-', label='Corrected Energy')
psiT = np.zeros(len(x))
psiT[0] = 1
psiT[1] = 1
for i in range(0, len(x) - 2):
psiT[i + 2] = psiT[i + 1] + (psiT[i + 1] - psiT[i]) - 2 * kt * c * c * psiT[i]
plt.plot(x, psiT, 'b-', label='Theoretical Energy')
plt.ylabel("Value of Psi")
plt.xlabel("X value from 0 to 0.5")
plt.title("Schrodingers equation for varying inital energy")
plt.legend(loc=3)
plt.yscale()
plt.show()
答案 0 :(得分:0)
您共享的代码失败,因为plt.yscale()
需要参数。我只是评论说出来了。
因为理论能量曲线与校正后的能量曲线相差很小,所以无法缩放y轴和仍然可以在x的整个范围内看到两条曲线(即 - 来自0到0.5)。相反,也许你应该绘制两条曲线的差异?
plt.plot(x, psiT-psi)
plt.title("Size of Correction for Varying Initial Energy")
plt.ylabel(r"$\Delta$E")
plt.xlabel("X value from 0 to 0.5")
plt.show()
此外,在x和y标签上添加一些单位可能会很不错。 :)