我有一个pandas数据框my_df
,my_df.dtypes
给了我们:
ts int64
fieldA object
fieldB object
fieldC object
fieldD object
fieldE object
dtype: object
然后我尝试将pandas数据框my_df
转换为火花数据框,方法如下:
spark_my_df = sc.createDataFrame(my_df)
但是,我收到了以下错误:
ValueErrorTraceback (most recent call last)
<ipython-input-29-d4c9bb41bb1e> in <module>()
----> 1 spark_my_df = sc.createDataFrame(my_df)
2 spark_my_df.take(20)
/usr/local/spark-latest/python/pyspark/sql/session.py in createDataFrame(self, data, schema, samplingRatio)
520 rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
521 else:
--> 522 rdd, schema = self._createFromLocal(map(prepare, data), schema)
523 jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
524 jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
/usr/local/spark-latest/python/pyspark/sql/session.py in _createFromLocal(self, data, schema)
384
385 if schema is None or isinstance(schema, (list, tuple)):
--> 386 struct = self._inferSchemaFromList(data)
387 if isinstance(schema, (list, tuple)):
388 for i, name in enumerate(schema):
/usr/local/spark-latest/python/pyspark/sql/session.py in _inferSchemaFromList(self, data)
318 schema = reduce(_merge_type, map(_infer_schema, data))
319 if _has_nulltype(schema):
--> 320 raise ValueError("Some of types cannot be determined after inferring")
321 return schema
322
ValueError: Some of types cannot be determined after inferring
有谁知道上述错误是什么意思?谢谢!
答案 0 :(得分:17)
为了推断字段类型,PySpark会查看每个字段中的非none记录。如果某个字段只有None记录,则PySpark无法推断该类型并会引发该错误。
手动定义架构将解决问题
>>> from pyspark.sql.types import StructType, StructField, StringType
>>> schema = StructType([StructField("foo", StringType(), True)])
>>> df = spark.createDataFrame([[None]], schema=schema)
>>> df.show()
+----+
|foo |
+----+
|null|
+----+
答案 1 :(得分:3)
And to fix this problem, you could provide your own defined schema.
For example:
To reproduce the error:
>>> df = spark.createDataFrame([[None, None]], ["name", "score"])
To fix the error:
>>> from pyspark.sql.types import StructType, StructField, StringType, DoubleType
>>> schema = StructType([StructField("name", StringType(), True), StructField("score", DoubleType(), True)])
>>> df = spark.createDataFrame([[None, None]], schema=schema)
>>> df.show()
+----+-----+
|name|score|
+----+-----+
|null| null|
+----+-----+
答案 2 :(得分:0)
如果您使用的是RDD[Row].toDF()
猴子补丁方法,则可以在推断类型时提高采样率以检查100多个记录:
my_df = my_rdd.toDF(sampleRatio=0.1)
my_df.show()
假设RDD中所有字段中都有非空行,那么当您将sampleRatio
增加到1.0时,更有可能找到它们。
答案 3 :(得分:0)
这可能是因为这些列都具有空值。您应先删除这些列,然后再将其转换为spark数据框
答案 4 :(得分:0)
我也遇到过同样的问题,如果您不需要为空的列,则可以在导入到spark之前将它们从pandas数据框中删除:
my_df = my_df.dropna(axis='columns', how='all') # Drops columns with all NA values
spark_my_df = sc.createDataFrame(my_df)