检测单词中的音节

时间:2009-01-01 17:08:41

标签: nlp spell-checking hyphenation

我需要找到一种相当有效的方法来检测单词中的音节。如,

隐形 - >在-VI-SIB乐

可以使用一些音节规则:

V 简历 虚电路 CVC CCV CCCV CVCC

*其中V是元音,C是辅音。 例如,

发音(5 Pro-nun-ci-a-tion; CV-CVC-CV-V-CVC)

我尝试了很少的方法,其中包括使用正则表达式(仅在你想要计算音节时有用)或硬编码规则定义(证明效率非常低的强力方法)并最终使用有限状态自动机(没有任何有用的结果)。

我的应用程序的目的是创建一个给定语言的所有音节的字典。该词典稍后将用于拼写检查应用程序(使用贝叶斯分类器)和文本到语音合成。

如果除了我以前的方法之外,我可以提供另一种方法来解决这个问题。

我在Java工作,但是C / C ++,C#,Python,Perl ......中的任何提示都适用于我。

16 个答案:

答案 0 :(得分:111)

为了连字,请阅读有关此问题的TeX方法。特别是看看Frank Liang的thesis dissertation Word Hy-phen-a-by Com-put-er 。他的算法非常准确,然后包含一个小例外字典,用于算法不起作用的情况。

答案 1 :(得分:43)

我偶然发现了这个页面,寻找同样的东西,并在这里找到了梁文的一些实现: https://github.com/mnater/hyphenator

除非你喜欢阅读60页的论文,而不是为非独特的问题调整免费的可用代码。 :)

答案 2 :(得分:39)

以下是使用NLTK的解决方案:

from nltk.corpus import cmudict
d = cmudict.dict()
def nsyl(word):
  return [len(list(y for y in x if y[-1].isdigit())) for x in d[word.lower()]] 

答案 3 :(得分:18)

我正在尝试解决这个问题,该程序将计算一段文本的flesch-kincaid和flesch读数。我的算法使用了我在这个网站上找到的内容:http://www.howmanysyllables.com/howtocountsyllables.html并且它相当接近。它仍然在像隐形和连字符这样复杂的单词上遇到麻烦,但我发现它可以用于我的目的。

它具有易于实施的优点。我发现“es”既可以是音节也可以不是。这是一场赌博,但我决定在我的算法中删除es。

private int CountSyllables(string word)
    {
        char[] vowels = { 'a', 'e', 'i', 'o', 'u', 'y' };
        string currentWord = word;
        int numVowels = 0;
        bool lastWasVowel = false;
        foreach (char wc in currentWord)
        {
            bool foundVowel = false;
            foreach (char v in vowels)
            {
                //don't count diphthongs
                if (v == wc && lastWasVowel)
                {
                    foundVowel = true;
                    lastWasVowel = true;
                    break;
                }
                else if (v == wc && !lastWasVowel)
                {
                    numVowels++;
                    foundVowel = true;
                    lastWasVowel = true;
                    break;
                }
            }

            //if full cycle and no vowel found, set lastWasVowel to false;
            if (!foundVowel)
                lastWasVowel = false;
        }
        //remove es, it's _usually? silent
        if (currentWord.Length > 2 && 
            currentWord.Substring(currentWord.Length - 2) == "es")
            numVowels--;
        // remove silent e
        else if (currentWord.Length > 1 &&
            currentWord.Substring(currentWord.Length - 1) == "e")
            numVowels--;

        return numVowels;
    }

答案 4 :(得分:7)

这是一个特别困难的问题,LaTeX连字算法无法完全解决这个问题。可以在文章Evaluating Automatic Syllabification Algorithms for English(Marchand,Adsett和Damper 2007)中找到一些可用方法和所涉及挑战的一个很好的总结。

答案 5 :(得分:5)

感谢Joe Basirico,感谢您在C#中分享快速而肮脏的实现。我使用过大型图书馆,他们工作,但他们通常有点慢,对于快速项目,你的方法很好。

以下是Java中的代码以及测试用例:

public static int countSyllables(String word)
{
    char[] vowels = { 'a', 'e', 'i', 'o', 'u', 'y' };
    char[] currentWord = word.toCharArray();
    int numVowels = 0;
    boolean lastWasVowel = false;
    for (char wc : currentWord) {
        boolean foundVowel = false;
        for (char v : vowels)
        {
            //don't count diphthongs
            if ((v == wc) && lastWasVowel)
            {
                foundVowel = true;
                lastWasVowel = true;
                break;
            }
            else if (v == wc && !lastWasVowel)
            {
                numVowels++;
                foundVowel = true;
                lastWasVowel = true;
                break;
            }
        }
        // If full cycle and no vowel found, set lastWasVowel to false;
        if (!foundVowel)
            lastWasVowel = false;
    }
    // Remove es, it's _usually? silent
    if (word.length() > 2 && 
            word.substring(word.length() - 2) == "es")
        numVowels--;
    // remove silent e
    else if (word.length() > 1 &&
            word.substring(word.length() - 1) == "e")
        numVowels--;
    return numVowels;
}

public static void main(String[] args) {
    String txt = "what";
    System.out.println("txt="+txt+" countSyllables="+countSyllables(txt));
    txt = "super";
    System.out.println("txt="+txt+" countSyllables="+countSyllables(txt));
    txt = "Maryland";
    System.out.println("txt="+txt+" countSyllables="+countSyllables(txt));
    txt = "American";
    System.out.println("txt="+txt+" countSyllables="+countSyllables(txt));
    txt = "disenfranchized";
    System.out.println("txt="+txt+" countSyllables="+countSyllables(txt));
    txt = "Sophia";
    System.out.println("txt="+txt+" countSyllables="+countSyllables(txt));
}

结果如预期的那样(它对Flesch-Kincaid来说足够好):

txt=what countSyllables=1
txt=super countSyllables=2
txt=Maryland countSyllables=3
txt=American countSyllables=3
txt=disenfranchized countSyllables=5
txt=Sophia countSyllables=2

答案 6 :(得分:5)

撞击@Tihamer和@ joe-basirico。非常有用的功能,不是完美,但对大多数中小型项目都有好处。 Joe,我用Python重写了你的代码实现:

def countSyllables(word):
    vowels = "aeiouy"
    numVowels = 0
    lastWasVowel = False
    for wc in word:
        foundVowel = False
        for v in vowels:
            if v == wc:
                if not lastWasVowel: numVowels+=1   #don't count diphthongs
                foundVowel = lastWasVowel = True
                        break
        if not foundVowel:  #If full cycle and no vowel found, set lastWasVowel to false
            lastWasVowel = False
    if len(word) > 2 and word[-2:] == "es": #Remove es - it's "usually" silent (?)
        numVowels-=1
    elif len(word) > 1 and word[-1:] == "e":    #remove silent e
        numVowels-=1
    return numVowels

希望有人觉得这很有用!

答案 7 :(得分:4)

Perl有Lingua::Phonology::Syllable个模块。您可以尝试,或尝试查看其算法。我也看到了其他几个较旧的模块。

我不明白为什么正则表达式只给你一个音节数。您应该能够使用捕获括号自己获取音节。假设您可以构造一个有效的正则表达式,即。

答案 8 :(得分:4)

今天我发现this Java实现了Frank Liang的连字算法,其中包含英语或德语模式,效果很好,可以在Maven Central上使用。

洞穴:删除.tex模式文件的最后几行很重要,因为否则这些文件无法在Maven Central上加载当前版本。

要加载和使用hyphenator,您可以使用以下Java代码段。 texTable是包含所需模式的.tex个文件的名称。这些文件可以在项目github网站上找到。

 private Hyphenator createHyphenator(String texTable) {
        Hyphenator hyphenator = new Hyphenator();
        hyphenator.setErrorHandler(new ErrorHandler() {
            public void debug(String guard, String s) {
                logger.debug("{},{}", guard, s);
            }

            public void info(String s) {
                logger.info(s);
            }

            public void warning(String s) {
                logger.warn("WARNING: " + s);
            }

            public void error(String s) {
                logger.error("ERROR: " + s);
            }

            public void exception(String s, Exception e) {
                logger.error("EXCEPTION: " + s, e);
            }

            public boolean isDebugged(String guard) {
                return false;
            }
        });

        BufferedReader table = null;

        try {
            table = new BufferedReader(new InputStreamReader(Thread.currentThread().getContextClassLoader()
                    .getResourceAsStream((texTable)), Charset.forName("UTF-8")));
            hyphenator.loadTable(table);
        } catch (Utf8TexParser.TexParserException e) {
            logger.error("error loading hyphenation table: {}", e.getLocalizedMessage(), e);
            throw new RuntimeException("Failed to load hyphenation table", e);
        } finally {
            if (table != null) {
                try {
                    table.close();
                } catch (IOException e) {
                    logger.error("Closing hyphenation table failed", e);
                }
            }
        }

        return hyphenator;
    }

之后Hyphenator即可使用。要检测音节,基本思路是将术语拆分为提供的连字符。

    String hyphenedTerm = hyphenator.hyphenate(term);

    String hyphens[] = hyphenedTerm.split("\u00AD");

    int syllables = hyphens.length;

您需要拆分"\u00AD“,因为API不会返回正常的"-"

这种方法优于Joe Basirico的答案,因为它支持许多不同的语言,并且检测德语连字更准确。

答案 9 :(得分:3)

为什么计算它?每个在线词典都有这个信息。 http://dictionary.reference.com/browse/invisible 在可见··I·BLE

答案 10 :(得分:2)

我找不到足够的方法来计算音节,所以我自己设计了一种方法。

您可以在此处查看我的方法:filing a new issue on github

我使用字典和算法方法的组合来计算音节。

您可以在此处查看我的图书馆:https://stackoverflow.com/a/32784041/2734752

我刚刚测试了我的算法,得分率达到了99.4%!

Lawrence lawrence = new Lawrence();

System.out.println(lawrence.getSyllable("hyphenation"));
System.out.println(lawrence.getSyllable("computer"));

输出:

4
3

答案 11 :(得分:1)

你可以试试Spacy Syllables。这适用于 Python 3.9:

设置:

pip install spacy
pip install spacy_syllables
python -m spacy download en_core_web_md

代码:

import spacy
from spacy_syllables import SpacySyllables
nlp = spacy.load('en_core_web_md')
syllables = SpacySyllables(nlp)
nlp.add_pipe('syllables', after='tagger')


def spacy_syllablize(word):
    token = nlp(word)[0]
    return token._.syllables


for test_word in ["trampoline", "margaret", "invisible", "thought", "Pronunciation", "couldn't"]:
    print(f"{test_word} -> {spacy_syllablize(test_word)}")

输出:

trampoline -> ['tram', 'po', 'line']
margaret -> ['mar', 'garet']
invisible -> ['in', 'vis', 'i', 'ble']
thought -> ['thought']
Pronunciation -> ['pro', 'nun', 'ci', 'a', 'tion']
couldn't -> ['could']

答案 12 :(得分:0)

不久前,我遇到了这个完全相同的问题。

我最终使用CMU Pronunciation Dictionary快速准确地查询了大多数单词。对于字典中没有的单词,我退回到了机器学习模型,该模型在预测音节数方面的准确度约为98%。

我将整个内容包装在一个易于使用的python模块中:https://github.com/repp/big-phoney

安装: pip install big-phoney

计数音节:

from big_phoney import BigPhoney
phoney = BigPhoney()
phoney.count_syllables('triceratops')  # --> 4

如果您不使用Python,并且想尝试基于ML模型的方法,那么我会做一个非常详细的write up on how the syllable counting model works on Kaggle

答案 13 :(得分:0)

在进行了许多测试并尝试了断字连接程序包之后,我根据许多示例编写了自己的代码。我还尝试了pyhyphenpyphen包,这些包与连字词典对接,但在许多情况下它们产生的音节数错误。对于该用例,nltk软件包太慢了。

我在Python中的实现是我编写的类的一部分,音节计数例程粘贴在下面。由于我仍然找不到解决静默单词结尾的好方法,因此它高估了一些音节的数量。

该函数返回用于Flesch-Kincaid可读性评分的每个单词的音节比率。该数字不一定是准确的,只需足够接近即可估算。

在我的第7代i7 CPU上,此功能花了1.1-1.2毫秒来获取759个单词的示例文本。

def _countSyllablesEN(self, theText):

    cleanText = ""
    for ch in theText:
        if ch in "abcdefghijklmnopqrstuvwxyz'’":
            cleanText += ch
        else:
            cleanText += " "

    asVow    = "aeiouy'’"
    dExep    = ("ei","ie","ua","ia","eo")
    theWords = cleanText.lower().split()
    allSylls = 0
    for inWord in theWords:
        nChar  = len(inWord)
        nSyll  = 0
        wasVow = False
        wasY   = False
        if nChar == 0:
            continue
        if inWord[0] in asVow:
            nSyll += 1
            wasVow = True
            wasY   = inWord[0] == "y"
        for c in range(1,nChar):
            isVow  = False
            if inWord[c] in asVow:
                nSyll += 1
                isVow = True
            if isVow and wasVow:
                nSyll -= 1
            if isVow and wasY:
                nSyll -= 1
            if inWord[c:c+2] in dExep:
                nSyll += 1
            wasVow = isVow
            wasY   = inWord[c] == "y"
        if inWord.endswith(("e")):
            nSyll -= 1
        if inWord.endswith(("le","ea","io")):
            nSyll += 1
        if nSyll < 1:
            nSyll = 1
        # print("%-15s: %d" % (inWord,nSyll))
        allSylls += nSyll

    return allSylls/len(theWords)

答案 14 :(得分:0)

我提供的解决方案在R中可以“正常”运行。远非完美。

countSyllablesInWord = function(words)
  {
  #word = "super";
  n.words = length(words);
  result = list();
  for(j in 1:n.words)
    {
    word = words[j];
    vowels = c("a","e","i","o","u","y");
    
    word.vec = strsplit(word,"")[[1]];
    word.vec;
    
    n.char = length(word.vec);
    
    is.vowel = is.element(tolower(word.vec), vowels);
    n.vowels = sum(is.vowel);
    
    
    # nontrivial problem 
    if(n.vowels <= 1)
      {
      syllables = 1;
      str = word;
      } else {
              # syllables = 0;
              previous = "C";
              # on average ? 
              str = "";
              n.hyphen = 0;
        
              for(i in 1:n.char)
                {
                my.char = word.vec[i];
                my.vowel = is.vowel[i];
                if(my.vowel)
                  {
                  if(previous == "C")
                    {
                    if(i == 1)
                      {
                      str = paste0(my.char, "-");
                      n.hyphen = 1 + n.hyphen;
                      } else {
                              if(i < n.char)
                                {
                                if(n.vowels > (n.hyphen + 1))
                                  {
                                  str = paste0(str, my.char, "-");
                                  n.hyphen = 1 + n.hyphen;
                                  } else {
                                           str = paste0(str, my.char);
                                          }
                                } else {
                                        str = paste0(str, my.char);
                                        }
                              }
                     # syllables = 1 + syllables;
                     previous = "V";
                    } else {  # "VV"
                          # assume what  ?  vowel team?
                          str = paste0(str, my.char);
                          }
            
                } else {
                            str = paste0(str, my.char);
                            previous = "C";
                            }
                #
                }
        
              syllables = 1 + n.hyphen;
              }
  
      result[[j]] = list("syllables" = syllables, "vowels" = n.vowels, "word" = str);
      }
  
  if(n.words == 1) { result[[1]]; } else { result; }
  }

以下是一些结果:

my.count = countSyllablesInWord(c("America", "beautiful", "spacious", "skies", "amber", "waves", "grain", "purple", "mountains", "majesty"));

my.count.df = data.frame(matrix(unlist(my.count), ncol=3, byrow=TRUE));
colnames(my.count.df) = names(my.count[[1]]);

my.count.df;

#    syllables vowels         word
# 1          4      4   A-me-ri-ca
# 2          4      5 be-auti-fu-l
# 3          3      4   spa-ci-ous
# 4          2      2       ski-es
# 5          2      2       a-mber
# 6          2      2       wa-ves
# 7          2      2       gra-in
# 8          2      2      pu-rple
# 9          3      4  mo-unta-ins
# 10         3      3    ma-je-sty

我没有意识到这看起来有多大“兔子洞”。


################ hackathon #######


# https://en.wikipedia.org/wiki/Gunning_fog_index
# THIS is a CLASSIFIER PROBLEM ...
# https://stackoverflow.com/questions/405161/detecting-syllables-in-a-word



# http://www.speech.cs.cmu.edu/cgi-bin/cmudict
# http://www.syllablecount.com/syllables/


  # https://enchantedlearning.com/consonantblends/index.shtml
  # start.digraphs = c("bl", "br", "ch", "cl", "cr", "dr", 
  #                   "fl", "fr", "gl", "gr", "pl", "pr",
  #                   "sc", "sh", "sk", "sl", "sm", "sn",
  #                   "sp", "st", "sw", "th", "tr", "tw",
  #                   "wh", "wr");
  # start.trigraphs = c("sch", "scr", "shr", "sph", "spl",
  #                     "spr", "squ", "str", "thr");
  # 
  # 
  # 
  # end.digraphs = c("ch","sh","th","ng","dge","tch");
  # 
  # ile
  # 
  # farmer
  # ar er
  # 
  # vowel teams ... beaver1
  # 
  # 
  # # "able"
  # # http://www.abcfastphonics.com/letter-blends/blend-cial.html
  # blends = c("augh", "ough", "tien", "ture", "tion", "cial", "cian", 
  #             "ck", "ct", "dge", "dis", "ed", "ex", "ful", 
  #             "gh", "ng", "ous", "kn", "ment", "mis", );
  # 
  # glue = c("ld", "st", "nd", "ld", "ng", "nk", 
  #           "lk", "lm", "lp", "lt", "ly", "mp", "nce", "nch", 
  #           "nse", "nt", "ph", "psy", "pt", "re", )
  # 
  # 
  # start.graphs = c("bl, br, ch, ck, cl, cr, dr, fl, fr, gh, gl, gr, ng, ph, pl, pr, qu, sc, sh, sk, sl, sm, sn, sp, st, sw, th, tr, tw, wh, wr");
  # 
  # # https://mantra4changeblog.wordpress.com/2017/05/01/consonant-digraphs/
  # digraphs.start = c("ch","sh","th","wh","ph","qu");
  # digraphs.end = c("ch","sh","th","ng","dge","tch");
  # # https://www.education.com/worksheet/article/beginning-consonant-blends/
  # blends.start = c("pl", "gr", "gl", "pr",
  #                 
  # blends.end = c("lk","nk","nt",
  # 
  # 
  # # https://sarahsnippets.com/wp-content/uploads/2019/07/ScreenShot2019-07-08at8.24.51PM-817x1024.png
  # # Monte     Mon-te
  # # Sophia    So-phi-a
  # # American  A-mer-i-can
  # 
  # n.vowels = 0;
  # for(i in 1:n.char)
  #   {
  #   my.char = word.vec[i];
  # 
  # 
  # 
  # 
  # 
  # n.syll = 0;
  # str = "";
  # 
  # previous = "C"; # consonant vs "V" vowel
  # 
  # for(i in 1:n.char)
  #   {
  #   my.char = word.vec[i];
  #   
  #   my.vowel = is.element(tolower(my.char), vowels);
  #   if(my.vowel)
  #     {
  #     n.vowels = 1 + n.vowels;
  #     if(previous == "C")
  #       {
  #       if(i == 1)
  #         {
  #         str = paste0(my.char, "-");
  #         } else {
  #                 if(n.syll > 1)
  #                   {
  #                   str = paste0(str, "-", my.char);
  #                   } else {
  #                          str = paste0(str, my.char);
  #                         }
  #                 }
  #        n.syll = 1 + n.syll;
  #        previous = "V";
  #       } 
  #     
  #   } else {
  #               str = paste0(str, my.char);
  #               previous = "C";
  #               }
  #   #
  #   }
  # 
  # 
  # 
  # 
## https://jzimba.blogspot.com/2017/07/an-algorithm-for-counting-syllables.html
# AIDE   1
# IDEA   3
# IDEAS  2
# IDEE   2
# IDE   1
# AIDA   2
# PROUSTIAN 3
# CHRISTIAN 3
# CLICHE  1
# HALIDE  2
# TELEPHONE 3
# TELEPHONY 4
# DUE   1
# IDEAL  2
# DEE   1
# UREA  3
# VACUO  3
# SEANCE  1
# SAILED  1
# RIBBED  1
# MOPED  1
# BLESSED  1
# AGED  1
# TOTED  2
# WARRED  1
# UNDERFED 2
# JADED  2
# INBRED  2
# BRED  1
# RED   1
# STATES  1
# TASTES  1
# TESTES  1
# UTILIZES  4

从本质上讲,一个简单的kincaid可读性功能...音节是从第一个功能返回的计数列表...

由于我的功能偏向于更多的音节,因此可读性得分会有所提高……目前还不错……如果目标是使文本更具可读性,这并不是最糟糕的事情。 / p>

computeReadability = function(n.sentences, n.words, syllables=NULL)
  {
  n = length(syllables);
  n.syllables = 0;
  for(i in 1:n)
    {
    my.syllable = syllables[[i]];
    n.syllables = my.syllable$syllables + n.syllables;
    }
  # Flesch Reading Ease (FRE):
  FRE = 206.835 - 1.015 * (n.words/n.sentences) - 84.6 * (n.syllables/n.words);
  # Flesh-Kincaid Grade Level (FKGL):
  FKGL = 0.39 * (n.words/n.sentences) + 11.8 * (n.syllables/n.words) - 15.59; 
  # FKGL = -0.384236 * FRE - 20.7164 * (n.syllables/n.words) + 63.88355;
  # FKGL = -0.13948  * FRE + 0.24843 * (n.words/n.sentences) + 13.25934;
  
  list("FRE" = FRE, "FKGL" = FKGL); 
  }

答案 15 :(得分:-1)

我用jsoup做了一次。这是一个示例音节解析器:

public String[] syllables(String text){
        String url = "https://www.merriam-webster.com/dictionary/" + text;
        String relHref;
        try{
            Document doc = Jsoup.connect(url).get();
            Element link = doc.getElementsByClass("word-syllables").first();
            if(link == null){return new String[]{text};}
            relHref = link.html(); 
        }catch(IOException e){
            relHref = text;
        }
        String[] syl = relHref.split("·");
        return syl;
    }