检查另一个数据帧中是否存在多行

时间:2016-11-09 19:03:51

标签: python pandas numpy dataframe

我有两个数据帧。我想看看另一个数据帧中是否存在特定的行(完整的)。来自df_subset的示例行:

id    category    value    date
1     A           10       01-01-15
3     C           10       03-01-15

另一个df_full:

id    category    value    date
1     A           10       01-01-15
2     B           10       02-01-15
3     C           10       03-01-15
4     D           16       04-01-15

有没有办法检查一个数据帧的行是否存在于另一个数据帧中?这样的事情(显然这不起作用):df_subset in df_full,存在吗?

> True

3 个答案:

答案 0 :(得分:3)

我认为你可以merge使用内部联接(默认情况下)与DataFrame.equals进行比较,以便与df_subset进行比较:

print (pd.merge(df_subset,df).equals(df_subset))
True

答案 1 :(得分:2)

您可以使用merge(..., indicator=True)方法:

In [14]: pd.merge(df1, df2, indicator=True, how='outer')
Out[14]:
   id category  value      date      _merge
0   1        A     10  01-01-15        both
1   3        C     10  03-01-15        both
2   2        B     10  02-01-15  right_only
3   4        D     16  04-01-15  right_only

答案 2 :(得分:2)

使用numpy

(df_subset.values[:, None] == df_full.values).all(2).any(1).all()

True

<强> 定时
enter image description here

解释

# using [:, None] to extend into new dimension at
# take advantage of broadcasting
a1 = df_subset.values[:, None] == df_full.values

     # ━> third dimension ━>
     # ━━━━> axis=2 ━━━>
# 1st dim
---->[[[ True  True  True  True]   # │
       [False False  True False]   # │ second dimension
       [False False  True False]   # │ axis=1
       [False False False False]]  # ↓

 # axis=0
 ---->[[False False  True False]   # │ 
       [False False  True False]   # │ second dimension
       [ True  True  True  True]   # │ axis=1
       [False False False False]]] # ↓

# first row of subset with each row of full 
[[[ True  True  True  True]  <-- This one is true for all 
  [False False  True False]
  [False False  True False]
  [False False False False]]

# second row of subset with each row of full 
 [[False False  True False] 
  [False False  True False]
  [ True  True  True  True]  <-- This one is true for all
  [False False False False]]]
a2 = a1.all(2)

#   ┌─ first row of subset all equal
[[ True False False False]
 [False False  True False]]
#               └─ second row of subset all equal
a3 = a2.any(1)

#  ┌─ first row of subset matched at least one row of full
[ True  True]
#        └─ second row of subset matched at least one row of full
a3.all()

True

df_subset所有行都在df_full