我有一个火花作业的以下输入数据(在Parquet中):
Person (millions of rows)
+---------+----------+---------------+---------------+
| name | location | start | end |
+---------+----------+---------------+---------------+
| Person1 | 1230 | 1478630000001 | 1478630000010 |
| Person2 | 1230 | 1478630000002 | 1478630000012 |
| Person2 | 1230 | 1478630000013 | 1478630000020 |
| Person3 | 3450 | 1478630000001 | 1478630000015 |
+---------+----------+---------------+---------------+
Event (millions of rows)
+----------+----------+---------------+
| event | location | start_time |
+----------+----------+---------------+
| Biking | 1230 | 1478630000005 |
| Skating | 1230 | 1478630000014 |
| Baseball | 3450 | 1478630000015 |
+----------+----------+---------------+
我需要将其转换为以下预期结果:
[{
"name" : "Biking",
"persons" : ["Person1", "Person2"]
},
{
"name" : "Skating",
"persons" : ["Person2"]
},
{
"name" : "Baseball",
"persons" : ["Person3"]
}]
单词:结果是每个事件的列表,每个事件都包含参与此事件的人员列表。
如果
,某人将被视为参与者Person.start < Event.start_time
&& Person.end > Event.start_time
&& Person.location == Event.location
我尝试了不同的方法,但实际上似乎唯一有效的方法是 加入两个数据帧,然后按事件分组/聚合它们。 但是连接速度非常慢,并且不能很好地分布在多个CPU核心上。
加入的当前代码:
final DataFrame fullFrame = persons.as("persons")
.join(events.as("events"), col("persons.location").equalTo(col("events.location"))
.and(col("events.start_time").geq(col("persons.start")))
.and(col("events.start_time").leq(col("persons.end"))), "inner");
//count to have an action
fullFrame.count();
我正在使用Spark Standalone和Java,如果这有所不同。
有没有人更好地了解如何使用Spark 1.6.2来解决这个问题?
答案 0 :(得分:1)
范围连接作为交叉产品执行,后续过滤步骤。一个可能更好的解决方案是,广播可能更小的events
表,然后映射persons
表:在地图内,检查连接条件并生成相应的结果