我有一个自定义7(高度)和24(宽)矩阵输入用于训练。输出是Age(Young,Mature,Old)的标签。 我想和Deeplearning4J卷积神经网络一起使用。
在构建一个非常基本的卷积神经网络后,第一个训练项目会出现以下错误,我不知道这是什么。
Exception in thread "main" java.lang.IllegalArgumentException: Invalid size index 2 wher it's >= rank 2
at org.nd4j.linalg.api.ndarray.BaseNDArray.size(BaseNDArray.java:4066)
at org.deeplearning4j.nn.layers.convolution.ConvolutionLayer.preOutput(ConvolutionLayer.java:192)
at org.deeplearning4j.nn.layers.convolution.ConvolutionLayer.activate(ConvolutionLayer.java:247)
at org.deeplearning4j.nn.graph.vertex.impl.LayerVertex.doForward(LayerVertex.java:88)
at org.deeplearning4j.nn.graph.ComputationGraph.feedForward(ComputationGraph.java:983)
at org.deeplearning4j.nn.graph.ComputationGraph.computeGradientAndScore(ComputationGraph.java:889)
我的DL4J代码
//Model Config here
MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations(iterations)
.regularization(true).l2(0.0005)
.learningRate(0.01)//.biasLearningRate(0.02)
//.learningRateDecayPolicy(LearningRatePolicy.Inverse).lrPolicyDecayRate(0.001).lrPolicyPower(0.75)
.weightInit(WeightInit.XAVIER)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.updater(Updater.NESTEROVS).momentum(0.9)
.list()
.layer(0, new ConvolutionLayer.Builder(4, 1)
//nIn and nOut specify depth. nIn here is the nChannels and nOut is the number of filters to be applied
.name("hzvt1")
.nIn(nChannels)
.stride(1, 1)
.nOut(26)
.activation("relu")//.activation("identity")
.build())
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nOut(outputNum)
.activation("softmax")
.build())
.setInputType(InputType.convolutional(nChannels,height,width))
.backprop(true).pretrain(false);
//Model build here
model.fit(wmTrain);MultiLayerConfiguration conf = builder.build();
model.fit(wmTrain);MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
//Training data creation here
INDArray weekMatrix = Nd4j.ones(DLAgeGender.nChannels,DLAgeGender.height*DLAgeGender.width);
double[] vector = new double[] { 0.0, 1.0, 0.0 };
INDArray intLabels = Nd4j.create(vector);
DataSet ds=new DataSet(weekMatrix,intLabels);
//Train the first item
model.fit(wmTrain);
我使用的是DL4J版本0.6,Java版本1.8,maven 3.3+
我怀疑图书馆有一个错误。
答案 0 :(得分:0)
在gitter支持的帮助下。我发现模型和输入不匹配。正确的工作代码如下。
我希望下一版本中的DL4J错误/异常消息更加清晰。
log.info("Build model....");
System.out.println("Building model...");
MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations(iterations)
.regularization(true).l2(0.0005)
.learningRate(0.01)//.biasLearningRate(0.02)
//.learningRateDecayPolicy(LearningRatePolicy.Inverse).lrPolicyDecayRate(0.001).lrPolicyPower(0.75)
.weightInit(WeightInit.XAVIER)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.updater(Updater.NESTEROVS).momentum(0.9)
.list()
.layer(0, new ConvolutionLayer.Builder(4, 1)
//nIn and nOut specify depth. nIn here is the nChannels and nOut is the number of filters to be applied
.name("hzvt1")
.nIn(nChannels)
.stride(1, 1)
.nOut(26)
.activation("relu")//.activation("identity")
.build())
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nOut(classes)
.activation("softmax")
.build())
.setInputType(InputType.convolutional(height,width,nChannels))
.backprop(true).pretrain(false);
//Model build here
model.fit(wmTrain);MultiLayerConfiguration conf = builder.build();
model.fit(wmTrain);MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
//Training data creation here
INDArray weekMatrix = Nd4j.ones(new int[]{1,DLAgeGender.nChannels,DLAgeGender.height,DLAgeGender.width});
INDArray intLabels;
double[] vector = new double[] { 0.0, 1.0, };
intLabels = Nd4j.create(vector);
DataSet ds=new DataSet(weekMatrix,intLabels);
log.info("Train model....");
model.setListeners(new ScoreIterationListener(1));
model.fit(wmTrain);
System.out.println("Data train OK.");