我的数据框有两列,A
和B
。在这种情况下,A
和B
的顺序并不重要;例如,我认为(0,50)
和(50,0)
是重复的。在pandas中,从数据框中删除这些重复项的有效方法是什么?
import pandas as pd
# Initial data frame.
data = pd.DataFrame({'A': [0, 10, 11, 21, 22, 35, 5, 50],
'B': [50, 22, 35, 5, 10, 11, 21, 0]})
data
A B
0 0 50
1 10 22
2 11 35
3 21 5
4 22 10
5 35 11
6 5 21
7 50 0
# Desired output with "duplicates" removed.
data2 = pd.DataFrame({'A': [0, 5, 10, 11],
'B': [50, 21, 22, 35]})
data2
A B
0 0 50
1 5 21
2 10 22
3 11 35
理想情况下,输出将按列A
的值进行排序。
答案 0 :(得分:10)
您可以在删除重复项之前对数据框的每一行进行排序:
data.apply(lambda r: sorted(r), axis = 1).drop_duplicates()
# A B
#0 0 50
#1 10 22
#2 11 35
#3 5 21
如果您希望结果按列A
排序:
data.apply(lambda r: sorted(r), axis = 1).drop_duplicates().sort_values('A')
# A B
#0 0 50
#3 5 21
#1 10 22
#2 11 35
答案 1 :(得分:8)
这有点丑陋,但更快的解决方案:
In [44]: pd.DataFrame(np.sort(data.values, axis=1), columns=data.columns).drop_duplicates()
Out[44]:
A B
0 0 50
1 10 22
2 11 35
3 5 21
时间:8K行DF
In [50]: big = pd.concat([data] * 10**3, ignore_index=True)
In [51]: big.shape
Out[51]: (8000, 2)
In [52]: %timeit big.apply(lambda r: sorted(r), axis = 1).drop_duplicates()
1 loop, best of 3: 3.04 s per loop
In [53]: %timeit pd.DataFrame(np.sort(big.values, axis=1), columns=big.columns).drop_duplicates()
100 loops, best of 3: 3.96 ms per loop
In [59]: %timeit big.apply(np.sort, axis = 1).drop_duplicates()
1 loop, best of 3: 2.69 s per loop
答案 2 :(得分:1)
df.T.apply(sorted).T.drop_duplicates()
答案 3 :(得分:0)
现在此解决方案有效,
data.set_index(['A','B']).stack().drop_duplicates().unstack().reset_index()
可以根据需要添加更多列。 例如
data.set_index(['A','B', 'C']).stack().drop_duplicates().unstack().reset_index()
答案 4 :(得分:0)
这是一个有点冗长的解决方案,但可能对初学者有帮助 -
创建新列以对 A 列和 B 列中的值进行跨行排序 -
data['C'] = np.where(data['A']<data['B'] , data['A'], data['B'])
data['D'] = np.where(data['A']>data['B'] , data['A'], data['B'])
按照相关要求删除重复项并按列“C”排序并重命名列
data2 = data[['C', 'D']].drop_duplicates().sort_values('C')
data2.columns = ['A', 'B']
data2
PS - "np.where" 函数的工作原理类似于 Excel 中的 If 公式(逻辑条件,值为 TRUE,值为 FALSE)