我不确定这是一个可接受的帖子,但出于好奇心
public static void main(String[] args) {
Method1();
Method2();
Method3();
}
private static void Method3() {
ArrayList<Object> a = new ArrayList<>();
ArrayList<Object> b = new ArrayList<>();
for (int i = 0; i < Math.pow(2, 15); i++) {
a.add("a" + i);
}
for (int i = 0; i < Math.pow(2, 15); i++) {
b.add("b" + i);
}
ArrayList<Object> aa = new ArrayList<>(a);
a.ensureCapacity(2*aa.size());
a.clear();
long time1 = System.currentTimeMillis();
for (int i = 0; i<b.size();i++) {
a.add(aa.get(i));
a.add(b.get(i));
}
long time2 = System.currentTimeMillis();
System.out.println(time2 - time1);
}
private static void Method2() {
ArrayList<Object> a = new ArrayList<>();
ArrayList<Object> b = new ArrayList<>();
for (int i = 0; i < Math.pow(2, 15); i++) {
a.add("a" + i);
}
for (int i = 0; i < Math.pow(2, 15); i++) {
b.add("b" + i);
}
long time1 = System.currentTimeMillis();
int size = a.size();
a.add(b.get(0));
for (int i = 1; i < size; i++) {
a.add(a.get(i));
a.add(b.get(i));
}
a.subList(1, size).clear();
long time2 = System.currentTimeMillis();
System.out.println(time2 - time1);
}
private static void Method1() {
ArrayList<Object> a = new ArrayList<>();
ArrayList<Object> b = new ArrayList<>();
for (int i = 0; i < Math.pow(2, 15); i++) {
a.add("a" + i);
}
for (int i = 0; i < Math.pow(2, 15); i++) {
b.add("b" + i);
}
long time1 = System.currentTimeMillis();
a.add(1, b.get(0));
for (int i = 1; i < b.size(); i++) {
a.add((2 * i + 1), b.get(i));
}
long time2 = System.currentTimeMillis();
System.out.println(time2 - time1);
}
更多的是随机数,而不仅仅是说
Random rnd = new Random();
int random1 = rnd.Next(1, 24);
int random2 = rnd.Next(25, 49);
int random3 = rnd.Next(random1, random2);
int random4 = rnd.Next(50, 74);
int random5 = rnd.Next(75, 100);
int random6 = rnd.Next(random4, random5);
int random7 = rnd.Next(random3, random6);
Console.WriteLine(random7);
答案 0 :(得分:1)
您的问题假定存在一定程度的随机性。这是不正确的,随机性是二元状态。如果无法准确预测试验结果,则试验随机。否则我们说它是 deterministic 。通过类比,你会问一个更死的问题,有人被枪杀或被电刑杀死的人?死了就死了!(*)
我们用分布来描述随机性,这些分布描述了各种结果的相对可能性。例如,均匀,高斯,三角形,泊松或指数分布,仅举几例。它们都会产生不同的结果在不同范围内下降的可能性,但我知道没有概率论说均匀分布比高斯分布更随机,反之亦然。同样地,你的两个算法会产生不同的结果分布,但由于两者都不可预测,因此它们都是随机的。
如果你想捕捉可预测性的程度,你可能应该问哪个算法具有更高的entropy而不是更随机的算法。众所周知的结果是均匀分布在有界区间支持的分布类中具有最大熵。因此,您的复杂算法具有比简单均匀分布更低的熵,并且更具可预测性。
(*) - 除了“公主新娘”,韦斯利只是“大部分时间死了”。
答案 1 :(得分:0)
第一种方法产生更像弯曲分布而不是线性分布的东西。
尝试运行以下命令行应用,您将看到不同之处:
using System;
namespace Demo
{
class Program
{
const int N = 1000000;
static void Main()
{
var result1 = testRandom(randomA);
var result2 = testRandom(randomB);
Console.WriteLine("Results for randomA():\n");
printResults(result1);
Console.WriteLine("\nResults for randomB():\n");
printResults(result2);
}
static void printResults(int[] results)
{
for (int i = 0; i < results.Length; ++i)
{
Console.WriteLine(i + ": " + new string('*', (int)(results[i]*2000L/N)));
}
}
static int[] testRandom(Func<Random, int> gen)
{
Random rng = new Random(12345);
int[] result = new int[100];
for (int i = 0; i < N; ++i)
++result[gen(rng)];
return result;
}
static int randomA(Random rng)
{
return rng.Next(1, 100);
}
static int randomB(Random rnd)
{
int random1 = rnd.Next(1, 24);
int random2 = rnd.Next(25, 49);
int random3 = rnd.Next(random1, random2);
int random4 = rnd.Next(50, 74);
int random5 = rnd.Next(75, 100);
int random6 = rnd.Next(random4, random5);
return rnd.Next(random3, random6);
}
}
}
答案 2 :(得分:0)
简易测试(直方图)将显示实际分布:
private static Random rnd = new Random();
private static int[] Hist() {
int[] freqs = new int[100];
// 100 buckets, 1000000 samples; we might expect about 10000 values in each bucket
int n = 1000000;
for (int i = 0; i < n; ++i) {
int random1 = rnd.Next(1, 24);
int random2 = rnd.Next(25, 49);
int random3 = rnd.Next(random1, random2);
int random4 = rnd.Next(50, 74);
int random5 = rnd.Next(75, 100);
int random6 = rnd.Next(random4, random5);
int random7 = rnd.Next(random3, random6);
freqs[random7] = freqs[random7] + 1;
}
return freqs;
}
...
Console.Write(string
.Join(Environment.NewLine, Hist()
.Select((v, i) => $"{i,2}: {v,5}");
你会得到像
这样的东西 0: 0 <- OK, zero can't appear
1: 21 <- too few (about 10000 expected)
2: 56 <- too few (about 10000 expected)
3: 125 ...
4: 171
5: 292
6: 392
7: 560
8: 747 ...
9: 931 <- too few (about 10000 expected)
...
45: 21528 <- too many (about 10000 expected)
46: 21549 ...
47: 21676
48: 21699
49: 21432
50: 21692
51: 21785
52: 21559
53: 21047
54: 20985 ...
55: 20820 <- too many (about 10000 expected)
...
90: 623 <- too few (about 10000 expected)
91: 492 ...
92: 350
93: 231
94: 173
95: 88
96: 52
97: 13
98: 0 ...
99: 0 <- too few (about 10000 expected)
没有像均匀分布的随机值,远离它,而是一种钟形曲线