我可以使用df.astype()方法转换为'category',从而转换pandas数据框中的所有文本功能,如下所示。但是我发现类别难以使用(例如用于绘制数据)并且更愿意创建一个新的整数列
#convert all objects to categories
object_types = dataset.select_dtypes(include=['O'])
for col in object_types:
dataset['{0}_category'.format(col)] = dataset[col].astype('category')
我可以使用这个hack将文本转换为整数:
#convert all objects to int values
object_types = dataset.select_dtypes(include=['O'])
new_cols = {}
for col in object_types:
data_set = set(dataset[col].tolist())
data_indexed = {}
for i, item in enumerate(data_set):
data_indexed[item] = i
new_list = []
for item in dataset[col].tolist():
new_list.append(data_indexed[item])
new_cols[col]=new_list
for key, val in new_cols.items():
dataset['{0}_int_value'.format(key)] = val
但是有更好的(或现有的)方法吗?
答案 0 :(得分:6)
我会使用专为此特定任务设计的factorize方法:
In [90]: x
Out[90]:
A B
9 c z
10 c z
4 b x
5 b y
1 a w
7 b z
In [91]: x.apply(lambda col: pd.factorize(col, sort=True)[0])
Out[91]:
A B
9 2 3
10 2 3
4 1 1
5 1 2
1 0 0
7 1 3
或:
In [92]: x.apply(lambda col: pd.factorize(col)[0])
Out[92]:
A B
9 0 0
10 0 0
4 1 1
5 1 2
1 2 3
7 1 0
答案 1 :(得分:2)
考虑df
df = pd.DataFrame(dict(A=list('aaaabbbbcccc'),
B=list('wwxxxyyzzzzz')))
df
你可以转换成这样的整数
def intify(s):
u = np.unique(s)
i = np.arange(len(u))
return s.map(dict(zip(u, i)))
或更短的版本
def intify(s):
u = np.unique(s)
return s.map({k: i for i, k in enumerate(u)})
df.apply(intify)
或单行
df.apply(lambda s: s.map({k:i for i,k in enumerate(s.unique())}))