我在不同贷款状态的水平下查看房屋所有权,并且我希望使用叠加的条形图以百分比显示。
我已经能够使用以下代码创建频率叠加条形图:
df_trunc1=df[['loan_status','home_ownership','id']]
sub_df1=df_trunc1.groupby(['loan_status','home_ownership'])['id'].count()
sub_df1.unstack().plot(kind='bar',stacked=True,rot=1,figsize=(8,8),title="Home ownership across Loan Types")
给了我这张照片:1
但我无法弄清楚如何将图表转换为百分比。因此,例如,我想进入默认组,哪个百分比有抵押,拥有等等。
这是我的上下文2的groupby表:
谢谢!
答案 0 :(得分:3)
我相信你需要自己转换百分比:
d = {('Default', 'MORTGAGE'): 498, ('Default', 'OWN'): 110, ('Default', 'RENT'): 611, ('Fully Paid', 'MORTGAGE'): 3100, ('Fully Paid', 'NONE'): 1, ('Fully Paid', 'OTHER'): 5, ('Fully Paid', 'OWN'): 558, ('Fully Paid', 'RENT'): 2568, ('Late (16-30 days)', 'MORTGAGE'): 1101, ('Late (16-30 days)', 'OWN'): 260, ('Late (16-30 days)', 'RENT'): 996, ('Late (31-120 days)', 'MORTGAGE'): 994, ('Late (31-120 days)', 'OWN'): 243, ('Late (31-120 days)', 'RENT'): 1081}
sub_df1 = pd.DataFrame(d.values(), columns=['count'], index=pd.MultiIndex.from_tuples(d.keys()))
sub_df2 = sub_df1.unstack()
sub_df2.columns = sub_df2.columns.droplevel() # Drop `count` label.
sub_df2 = sub_df2.div(sub_df2.sum())
sub_df2.T.plot(kind='bar', stacked=True, rot=1, figsize=(8, 8),
title="Home ownership across Loan Types")
sub_df3 = sub_df1.unstack().T
sub_df3.index = sub_df3.index.droplevel() # Drop `count` label.
sub_df3 = sub_df3.div(sub_df3.sum())
sub_df3.T.plot(kind='bar', stacked=True, rot=1, figsize=(8, 8),
title="Home ownership across Loan Types")
答案 1 :(得分:0)
我通过两次转置数据帧来计算百分比。是否逐步显示出更明确的逻辑。
#transpose
to_plot =sub_df1.unstack()
to_plot_transpose = to_plot.transpose()
#calc %
to_plot_transpose_pct = to_plot_transpose.div(to_plot_transpose.sum())
#transpose back
to_plot_pct=to_plot_transpose_pct.transpose()
#plot
to_plot_pct.plot(kind='bar',stacked=True,rot=1,figsize= .
(8,8),title="Home ownership across Loan Types")