Python - 如何在没有NLTK的情况下实现确定性CYK算法

时间:2016-11-03 18:24:25

标签: python algorithm nlp deterministic cyk

注意:对于这个问题,我不能使用除io和sys之外的任何导入

对于NLP赋值,我必须创建一个程序,它将语法文件和话语文件作为系统参数,我已经完成了。

问题是,我对如何实现确定性CYK算法感到困惑,该算​​法将字符串输出为扩展的Chomsky Normal Form(eCNF)。

我尝试实现Node类,但是在实现正确的表单时遇到了很多麻烦。我还发现了CYK算法的概率版本的实现,但它们让我更加困惑。我不想要任何概率分数。

我尝试成功创建一个矩阵P [i] [j],但它并没有成为三角形,当我用我的话语行中的单词填充它时,它只接受了行中的最后一个单词。

这是我想要遵循的伪代码:

Set P to a (n+1) x (n+1) matrix
for j = 1 to Length(words) do
    for i = j-1 downto 0 do
        for each non-terminal N in G do
        P[i][j].NT[N] = empty array
for j = 1 to Length(words) do
    for each rule N -> words[j] in G do
    append (j, N -> words[j]) to P[j-1][j].NT[N]
change = true
    while change do
    change = false
    for each non-terminal N in G do
        if P[j-1][j].NT[N] is not empty and
       there is a rule N' -> N in G and
           (j, N' -> N) is not in P[j-1][j].NT[N'] then
            append (j, N' -> N) to P[j-1][j].NT[N']
        change = true
for j = 2 to Length(words) do
    for i = j-2 downto 0 do
    for k = i+1 to j-1 do
        for each rule N -> A B in G such that
       P[i][k].NT[A] is nonempty and
       P[k][j].NT[B] is nonempty do
            append (k, N -> A B) to P[i][j].NT[N]
    change = true
        while change do
        change = false
        for each non-terminal N in G do
            if P[i][j].NT[N] is not empty and
           there is a rule N' -> N in G and
               (j, N' -> N) is not in P[i][j].NT[N'] then
                append (j, N' -> N) to P[i][j].NT[N']
            change = true
return P

以下是两个示例输入文件:

语法

S -> NP VP 
NP -> Det N
NP -> PN
Det -> "the"
N -> "dog"
N -> "rat"
N -> "elephant"
PN -> "Alice" 
PN -> "Bob"
VP -> V NP
V -> "admired" 
V -> "bit"
V -> "chased"

话语

the aardvark bit the dog
the dog bit the man
Bob killed Alice

到目前为止,我的程序可以判断何时可以解析句子以及何时不能解析。现在我需要接受可以解析并解析它们的话语。

输出应如下所示:

[S [NP [Det "the"] [N "man"]] [VP [V "shot"] [NP [Det "the"] [N "elephant"]]]]

这是我的程序,删除了所有错误诱导代码:

import sys
import io

# usage = python CKYdet.py g#.ecfg u#L.utt

# Command Line Arguments - argv[0], argv[1], argv[2]
script = sys.argv[0]
grammarFile = open(sys.argv[1])
utteranceFile = open(sys.argv[2])

# Parsing algorithm
def CKYparse(uttline):
    with open(sys.argv[1]) as rules:
        # The following two lines throw index out of bound error. Not sure I need to select grammar rules this way.
        # rhs = [line.split("-> ", 1)[1].strip('\n ') for line in rules]
        # lhs = [line.split(None, 1)[0] for line in rules]

        # Here I want to assign the words to their repective grammar rules
        #Then I need to add each word to the matrix according to the grammar
        #Then outpit the matrix with priper formatting

    return "Valid parse goes here!" # Temporary return value until parse matrix P can be returned

# Initialize arrays from grammarFile
ruleArray = []
wordsInQuotes = []

for line in grammarFile:
    rule = line.rstrip('\n')
    start = line.find('"') + 1
    end = line.find('"', start)
    ruleArray.append(rule)
    wordsInQuotes.append(line[start:end])    #create a set of words from grammar file


# Print final output
# Check whether line in utteranceFile can be parsed.
# If so, parse it.
# If not, print "No valid parse"
n = 0
for line in utteranceFile:
    uttline = line
    n = n + 1
    uttString = "Utterance #{}: {}".format(n, line)
    notValidString = "No valid parse\n"
    if (all(x in wordsInQuotes for x in line.split())):        #if word is found in grammarFile
        print "".join((uttString, CKYparse(line)))
    else:
        print "".join((uttString, notValidString))

我理解算法的原理,但试图在没有NLTK的情况下用Python编写它是非常棘手的。

0 个答案:

没有答案