我正在使用Spark 1.6.1并写入HDFS。在某些情况下,似乎所有工作都由一个线程完成。那是为什么?
另外,我需要使用parquet.enable.summary-metadata将镶木地板文件注册到Impala。
Df.write().partitionBy("COLUMN").parquet(outputFileLocation);
同样,所有这些都发生在执行者的一个cpu中。
16/11/03 14:59:20 INFO datasources.DynamicPartitionWriterContainer: Using user defined output committer class org.apache.parquet.hadoop.ParquetOutputCommitter
16/11/03 14:59:20 INFO mapred.SparkHadoopMapRedUtil: No need to commit output of task because needsTaskCommit=false: attempt_201611031459_0154_m_000029_0
16/11/03 15:17:56 INFO sort.UnsafeExternalSorter: Thread 545 spilling sort data of 41.9 GB to disk (3 times so far)
16/11/03 15:21:05 INFO storage.ShuffleBlockFetcherIterator: Getting 0 non-empty blocks out of 0 blocks
16/11/03 15:21:05 INFO storage.ShuffleBlockFetcherIterator: Started 0 remote fetches in 1 ms
16/11/03 15:21:05 INFO datasources.DynamicPartitionWriterContainer: Using user defined output committer class org.apache.parquet.hadoop.ParquetOutputCommitter
16/11/03 15:21:05 INFO codec.CodecConfig: Compression: GZIP
16/11/03 15:21:05 INFO hadoop.ParquetOutputFormat: Parquet block size to 134217728
16/11/03 15:21:05 INFO hadoop.ParquetOutputFormat: Parquet page size to 1048576
16/11/03 15:21:05 INFO hadoop.ParquetOutputFormat: Parquet dictionary page size to 1048576
16/11/03 15:21:05 INFO hadoop.ParquetOutputFormat: Dictionary is on
16/11/03 15:21:05 INFO hadoop.ParquetOutputFormat: Validation is off
16/11/03 15:21:05 INFO hadoop.ParquetOutputFormat: Writer version is: PARQUET_1_0
16/11/03 15:21:05 INFO parquet.CatalystWriteSupport: Initialized Parquet WriteSupport with Catalyst schema:
然后再说: -
16/11/03 15:21:05 INFO compress.CodecPool: Got brand-new compressor [.gz]
16/11/03 15:21:05 INFO datasources.DynamicPartitionWriterContainer: Maximum partitions reached, falling back on sorting.
16/11/03 15:32:37 INFO sort.UnsafeExternalSorter: Thread 545 spilling sort data of 31.8 GB to disk (0 time so far)
16/11/03 15:45:47 INFO sort.UnsafeExternalSorter: Thread 545 spilling sort data of 31.8 GB to disk (1 time so far)
16/11/03 15:48:44 INFO datasources.DynamicPartitionWriterContainer: Sorting complete. Writing out partition files one at a time.
16/11/03 15:48:44 INFO codec.CodecConfig: Compression: GZIP
16/11/03 15:48:44 INFO hadoop.ParquetOutputFormat: Parquet block size to 134217728
16/11/03 15:48:44 INFO hadoop.ParquetOutputFormat: Parquet page size to 1048576
16/11/03 15:48:44 INFO hadoop.ParquetOutputFormat: Parquet dictionary page size to 1048576
16/11/03 15:48:44 INFO hadoop.ParquetOutputFormat: Dictionary is on
16/11/03 15:48:44 INFO hadoop.ParquetOutputFormat: Validation is off
16/11/03 15:48:44 INFO hadoop.ParquetOutputFormat: Writer version is: PARQUET_1_0
16/11/03 15:48:44 INFO parquet.CatalystWriteSupport: Initialized Parquet WriteSupport with Catalyst schema:
架构
以下约200条线路一次又一次20次左右。
16/11/03 15:48:44 INFO compress.CodecPool: Got brand-new compressor [.gz]
16/11/03 15:49:50 INFO hadoop.InternalParquetRecordWriter: mem size 135,903,551 > 134,217,728: flushing 1,040,100 records to disk.
16/11/03 15:49:50 INFO hadoop.InternalParquetRecordWriter: Flushing mem columnStore to file. allocated memory: 89,688,651
以下约200行
16/11/03 15:49:51 INFO hadoop.ColumnChunkPageWriteStore: written 413,231B for [a17bbfb1_2808_11e6_a4e6_77b5e8f92a4f] BINARY: 1,040,100 values, 1,138,534B raw, 412,919B comp, 8 pages, encodings: [RLE, BIT_PACKED, PLAIN_DICTIONARY], dic { 356 entries, 2,848B raw, 356B comp}
最后: -
16/11/03 16:15:41 INFO output.FileOutputCommitter: Saved output of task 'attempt_201611031521_0154_m_000040_0' to hdfs://PATH/_temporary/0/task_201611031521_0154_m_000040
16/11/03 16:15:41 INFO mapred.SparkHadoopMapRedUtil: attempt_201611031521_0154_m_000040_0: Committed
16/11/03 16:15:41 INFO executor.Executor: Finished task 40.0 in stage 154.0 (TID 8545). 3757 bytes result sent to driver
更新: parquet.enable.summary-metadata设置为false 将分区减少到21.
Df.write().mode(SaveMode.Append).partitionBy("COL").parquet(outputFileLocation);
确实提高了速度但仍需要一个小时才能完成。
更新: - 大多数问题的原因是多次左外连接,在写入之前实现了非常小的数据。由于Append模式保持文件打开,因此发生溢出。在此模式下,默认限制为5个打开文件。您可以使用属性“spark.sql.sources.maxConcurrentWrites”
来增加此值答案 0 :(得分:1)
最后,在到达写入部分之前对代码进行了一些优化之后,我们获得了更好的写入时间。之前我们无法进行重新分区,因为洗牌超过4-5 Gb。在之前的更改之后,我将代码从coalesce更改为repartition,它通过为执行程序中的每个CPU提供有关要写入的相同数据量的数据,在所有执行程序中分配数据。 因此,如果您发现作业创建的拼花文件大小不同,请在写入之前尝试重新分区Dataframe。
此外,这也有助于写入性能: -
sc.hadoopConfiguration.set("parquet.enable.dictionary", "false")