我已经对此进行了大量的研究,我认为我的逻辑已经磨损,几乎在那里但似乎无法理解为什么在cv2.imshow()窗口中只显示灰色框没有任何内容,但是好消息是我能够检测到脸部和裁剪脸部,然后将其保存在文件夹中。
你能不能说清楚我出错的地方#Author: Waheed Rafiq
#Research Student Birmingham City University
#Date: 03/11/2016
#Description :detect and Save capture face in a folder.
#Import library required for Capture face.
import cv2
#import the cascade for face detection
FaceClassifier =cv2.CascadeClassifier
('haarcascade_frontalface_default.xml')
# access the webcam (every webcam has
capture = cv2.VideoCapture(0)
while(True):
# Capture frame-by-frame
ret, frame = capture.read()
if not capture:
print "Error opening webcam device"
sys.exit(1)
# to detect faces in video
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = FaceClassifier.detectMultiScale(gray, 1.3, 5)
# Resize Image
minisize = (frame.shape[1],frame.shape[0])
miniframe = cv2.resize(frame, minisize)
# Store detected frames in variable name faces
faces = FaceClassifier.detectMultiScale(miniframe)
# Draw rectangle
for f in faces:
x, y, w, h = [ v for v in f ]
cv2.rectangle(frame, (x,y), (x+w,y+h), (255,255,255))
#Save just the rectangle faces in SubRecFaces
sub_face = frame[y:y+h, x:x+w]
FaceFileName = "unknowfaces/face_" + str(y) + ".jpg"
cv2.imwrite(FaceFileName, sub_face)
#Display the image
cv2.imshow('Result',frame)
break
# When everything done, release the capture
img.release()
cv2.waitKey(20)
cv2.destroyAllWindows()
确实会支持你的支持
答案 0 :(得分:4)
我不得不改进我的代码,并再次重新考虑逻辑:对于那些希望知道如何使用Opencv从网络摄像头或Raspberry PI中检测到面部然后裁剪检测到的面部的人,这就是你的工作方式在python 2.7中使用OpenCV 2.4.12
# croppfacedetection.py
#Author: Waheed Rafiq
#Research Student Birmingham City University
#Date: 03/11/2016
#Description : Save capture face in a folder.
#Import library required for Capture face.
# Should you wish to use this code for
#education purpose in your assignment or dissertation
# please use the correct citation and give credit where required.
import cv2
size = 4
webcam = cv2.VideoCapture(0) #Use camera 0
# We load the xml file
classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Above line normalTest
#classifier = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
#Above line test with different calulation
#classifier = cv2.CascadeClassifier('haarcascade_frontalface_alt_tree.xml')
#classifier = cv2.CascadeClassifier('lbpcascade_frontalface.xml')
while True:
(rval, im) = webcam.read()
im=cv2.flip(im,1,0) #Flip to act as a mirror
# Resize the image to speed up detection
mini = cv2.resize(im, (im.shape[1] / size, im.shape[0] / size))
# detect MultiScale / faces
faces = classifier.detectMultiScale(mini)
# Draw rectangles around each face
for f in faces:
(x, y, w, h) = [v * size for v in f] #Scale the shapesize backup
cv2.rectangle(im, (x, y), (x + w, y + h),(0,255,0),thickness=4)
#Save just the rectangle faces in SubRecFaces
sub_face = im[y:y+h, x:x+w]
FaceFileName = "unknowfaces/face_" + str(y) + ".jpg"
cv2.imwrite(FaceFileName, sub_face)
# Show the image
cv2.imshow('BCU Research by Waheed Rafiq (c)', im)
key = cv2.waitKey(10)
# if Esc key is press then break out of the loop
if key == 27: #The Esc key
break
记住你需要创建一个文件夹,在该区域内你需要一个名为unknownfaces的文件夹从文件夹的根目录运行脚本,它应该将它检测到的任何面部保存到unknowfaces文件夹中。 有关此代码的更多信息将很快在我的网站上提供 waheedrafiq.net
答案 1 :(得分:1)
您的代码似乎无法访问cv2.waitKey(20)
。您应该在break
语句之前移动它。
在OpenCV中cv2.waitKey
完成图像显示任务。这不仅仅是为了添加暂停。
答案 2 :(得分:1)
这是使用Python 3.6 OpenCV 4+的代码的“有效”版本。您不必推荐任何人,就可以自由使用它。
import cv2
import os
classifier = cv2.CascadeClassifier(cv2.data.haarcascades+"haarcascade_frontalface_default.xml")
dirFace = 'cropped_face'
# Create if there is no cropped face directory
if not os.path.exists(dirFace):
os.mkdir(dirFace)
print("Directory " , dirFace , " Created ")
else:
print("Directory " , dirFace , " has found.")
webcam = cv2.VideoCapture(0) # Camera 0 according to USB port
# video = cv2.VideoCapture(r"use full windows path") # video path
while (True):
(f, im) = webcam.read() # f returns only True, False according to video access
# (f, im) = video.read() # video
if f != True:
break
# im=cv2.flip(im,1,0) #if you would like to give mirror effect
# detectfaces
faces = classifier.detectMultiScale(
im, # stream
scaleFactor=1.10, # change these parameters to improve your video processing performance
minNeighbors=20,
minSize=(30, 30) # min image detection size
)
# Draw rectangles around each face
for (x, y, w, h) in faces:
cv2.rectangle(im, (x, y), (x + w, y + h),(0,0,255),thickness=2)
# saving faces according to detected coordinates
sub_face = im[y:y+h, x:x+w]
FaceFileName = "cropped_face/face_" + str(y+x) + ".jpg" # folder path and random name image
cv2.imwrite(FaceFileName, sub_face)
# Video Window
cv2.imshow('Video Stream',im)
key = cv2.waitKey(1) & 0xFF
# q for exit
if key == ord('q'):
break
webcam.release()