我将输入数据转换为hdf5格式。 每个输入数据的形状为309 dims和一个标签 输入数据如下: part of the input data like this
我的网络结构如下:
name: "RegressionNet"
layer {
name: "framert"
type: "HDF5Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
hdf5_data_param {
source: "train_data_list.txt"
batch_size: 100
}
}
layer {
name: "framert"
type: "HDF5Data"
top: "data"
top: "label"
include {
phase: TEST
}
hdf5_data_param {
source: "test_data_list.txt"
batch_size: 100
}
}
layer {
name: "inner1"
type: "InnerProduct"
bottom: "data"
top: "inner1"
param {
lr_mult: 1
decay_mult: 1.5
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "inner2"
type: "InnerProduct"
bottom: "inner1"
top: "inner2"
param {
lr_mult: 1
decay_mult: 1.0
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 400
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "inner3"
type: "InnerProduct"
bottom: "inner2"
top: "inner3"
param {
lr_mult: 1
decay_mult: 1.0
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 300
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "inner4"
type: "InnerProduct"
bottom: "inner3"
top: "inner4"
param {
lr_mult: 1
decay_mult: 1.0
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 200
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "inner5"
type: "InnerProduct"
bottom: "inner4"
top: "inner5"
param {
lr_mult: 1
decay_mult: 1.0
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 100
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "inner6"
type: "InnerProduct"
bottom: "inner5"
top: "inner6"
param {
lr_mult: 1
decay_mult: 1.0
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "inner6"
top: "inner6"
relu_param {
engine: CAFFE
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "inner6"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "EuclideanLoss"
bottom: "inner6"
bottom: "label"
top: "loss"
}
我的求解者如下:
net: "net_csv_hdf5.prototxt"
test_iter: 100
test_interval: 100
base_lr: 0.001
momentum: 0.9
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 50
max_iter: 5000
snapshot: 2500
snapshot_prefix: "/examples"
solver_mode: CPU
完成训练阶段后,我使用测试数据进行预测,而预测结果如下(有太多零):
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000122316
0.00318826
0.00606083
0.0092759
0.0124592
0.015264
0.0181027
0.021088
0.0237832
0.027108
0.0306765
0.0345342
0.0379068
0.0409781
0.044281
0.0478444
0.0509017
答案 0 :(得分:1)
你忘了在net.prototxt中添加激活功能,就像这个“
layer {
name: "Sigmoid1"
type: "Sigmoid"
bottom: "inner1"
top: "Sigmoid1"
}