我有一个形状为(t,n1,n2)
的3D numpy数组:
x=np.random.rand(10,2,4)
我需要计算另一个形状为3D
的{{1}}数组y
,以便:
(t,n1,n1)
等等。
因此,循环实现将是 -
y[0] = np.cov[x[0,:,:])
有没有办法对此进行矢量化,以便我可以一次性计算所有协方差矩阵?我试过了:
y=np.zeros((10,2,2))
for i in np.arange(x.shape[0]):
y[i]=np.cov(x[i,:,:])
但它不起作用。
答案 0 :(得分:2)
入侵numpy.cov source code
并尝试使用默认参数。事实证明,np.cov(x[i,:,:])
只是:
N = x.shape[2]
m = x[i,:,:]
m -= np.sum(m, axis=1, keepdims=True) / N
cov = np.dot(m, m.T) /(N - 1)
因此,任务是对此循环进行矢量化,该循环将遍历i
并一次处理来自x
的所有数据。同样,我们可以在第三步使用broadcasting
。对于最后一步,我们在第一轴的所有切片上执行sum-reduction
。这可以使用np.einsum
以矢量化方式有效地实现。因此,最终实现了 -
N = x.shape[2]
m1 = x - x.sum(2,keepdims=1)/N
y_out = np.einsum('ijk,ilk->ijl',m1,m1) /(N - 1)
运行时测试
In [155]: def original_app(x):
...: n = x.shape[0]
...: y = np.zeros((n,2,2))
...: for i in np.arange(x.shape[0]):
...: y[i]=np.cov(x[i,:,:])
...: return y
...:
...: def proposed_app(x):
...: N = x.shape[2]
...: m1 = x - x.sum(2,keepdims=1)/N
...: out = np.einsum('ijk,ilk->ijl',m1,m1) / (N - 1)
...: return out
...:
In [156]: # Setup inputs
...: n = 10000
...: x = np.random.rand(n,2,4)
...:
In [157]: np.allclose(original_app(x),proposed_app(x))
Out[157]: True # Results verified
In [158]: %timeit original_app(x)
1 loops, best of 3: 610 ms per loop
In [159]: %timeit proposed_app(x)
100 loops, best of 3: 6.32 ms per loop
那里有巨大的加速!