首先,我想尽快使用1个连接发送多个请求。下面的代码运行良好而快速,但我希望它超越异步。回到我的问题,是否可以使用多线程或多处理并行运行它。我听说你可以使用ThreadPoolExecutor或ProcessPoolExecutor。
import random
import asyncio
from aiohttp import ClientSession
import time
from concurrent.futures import ProcessPoolExecutor
async def fetch(sem,url, session):
async with sem:
async with session.get(url) as response:
return await response.read()
async def run(r):
url = "http://www.example.com/"
tasks = []
sem = asyncio.Semaphore(1000)
async with ClientSession() as session:
for i in range(r):
task = asyncio.ensure_future(fetch(sem, url.format(i), session)) #return a task
tasks.append(task)
responses = asyncio.gather(*tasks)
await responses
if __name__ == "__main__":
number = 10000
loop = asyncio.get_event_loop()
start = time.time()
loop.run_until_complete(run(number))
end = time.time() - start
print (end)
从测试开始,它设法在49秒内发送了大约10k的请求。 我需要它更快,有什么建议吗? (线程,过程)
答案 0 :(得分:1)
ProcessPoolExecutor是一种进行真正的多处理的方法。 对于您的用例,它基本上就像您同时启动程序的多个副本一样。如果您的计算机需要带宽和CPU,则应该能够通过使用ProcessPoolExecutor(max_workers = 4)将性能提高4(
)但是每个子进程都需要一个asyncio事件循环,所以你可以这样做:
def main(n):
loop = asyncio.get_event_loop()
loop.run_until_complete(run(n))
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as exc:
exc.submit(main, 2500)
exc.submit(main, 2500)
exc.submit(main, 2500)
exc.submit(main, 2500)
作为run
函数的旁注:您也无需使用ensure_future
或任务,async def
函数的结果是协程,您可以直接使用等待或传递给asyncio.gather
async def run(r):
url = "http://www.example.com/"
sem = asyncio.Semaphore(1000)
async with ClientSession() as session:
coros = [fetch(sem, url.format(i), session) for i in range(r)]
await asyncio.gather(*coros)