我写了一个小的javascript程序来查看julia set images [link]。我已经实现了多个迭代算法(不只是z^2 + c
)并且最近实现了exp(z)
。但是,我的输出与维基百科页面图像不同。以下是c值-0.65
:
显然,他们的输出更加丰富多彩,并且显示更多细节!我认为这可能是我的实现中的错误,或者也许是我的着色算法?或者维基百科的结果是由一些不同的手段产生的?下面是一个只有e^z + c
算法和相关函数的MVE。如果您想免费使用整个程序,则会托管on my site。
//globals
var MAXITERATION = 2500;
var BOUNDARY = 4;
var CANVASID = "juliaDraw";
var CANVAS = document.getElementById("juliaDraw");
var CONTEXT = document.getElementById("juliaDraw").getContext('2d');
var HEIGHT = 750;
var WIDTH = 750;
var CONVERGENCEITERCOUNT = 2500;
/** Complex number functions **/
function complexNum(real, imaginary) {
this.real = real;
this.imaginary = imaginary;
return this;
}
// This is the bit that might be a problem but it seems to return correct results?
function raiseNumberToComplexPower(x, c) {
var s = Math.pow(x, c.real);
var pow = c.imaginary * Math.log(x);
var num = new complexNum(Math.cos(pow), Math.sin(pow));
return scalarComplex(s, num);
}
function addComplex(c1, c2) {
var real = c1.real + c2.real;
var imaginary = c1.imaginary + c2.imaginary;
return new complexNum(real, imaginary);
}
function multComplex(c1, c2) {
var real = (c1.real * c2.real) - (c1.imaginary * c2.imaginary);
var imaginary = (c1.real * c2.imaginary) + (c2.real * c1.imaginary);
return new complexNum(real, imaginary);
}
function scalarComplex(s, c) {
return new complexNum(c.real * s, c.imaginary * s);
}
function getComplexModulus(c) {
return Math.sqrt((c.real * c.real) + (c.imaginary * c.imaginary));
}
/** Drawing and manipulation **/
function createArray(length) {
var arr = new Array(length || 0),
i = length;
if (arguments.length > 1) {
var args = Array.prototype.slice.call(arguments, 1);
while (i--) arr[length - 1 - i] = createArray.apply(this, args);
}
return arr;
}
function drawJulia() {
CONTEXT.clearRect(0, 0, WIDTH, HEIGHT);
var start = new complexNum(-2, 2);
var c = new complexNum(readInput('realValue') * 1, readInput('imagValue') * 1);
STARTPOS = {
real: -2,
imaginary: 2
}
RANGE = 4;
plotJuliaSet(CANVASID, c);
}
function plotJuliaSet(canvasID, c) {
var complexNumberArray = createArray(WIDTH + 1, HEIGHT + 1);
var doesPointEscapeArray = createArray(WIDTH + 1, HEIGHT + 1);
ITERALGO = exponential;
for (var x = 0; x <= WIDTH; x++) {
for (var y = 0; y <= HEIGHT; y++) {
complexNumberArray[x][y] = new coordsToComplex({
x: x,
y: y
});
complexNumberArray[x][y] = complexNumberArray[x][y];
doesPointEscapeArray[x][y] = doesPointEscape(c, complexNumberArray[x][y]);
if (doesPointEscapeArray[x][y] >= 0) {
drawPointOnCanvas(x, y, getColor(doesPointEscapeArray[x][y]));
} else {
drawPointOnCanvas(x, y, 'black');
}
}
}
console.log('done');
}
function doesPointEscape(c, complexNum) {
var iterations = 0;
var iterationsToEscape = -1;
var escaped = false;
while ((!escaped) && (iterations < MAXITERATION)) {
if (getComplexModulus(complexNum) > BOUNDARY) {
escaped = true;
iterationsToEscape = iterations;
}
complexNum = ITERALGO(complexNum, c);
iterations++;
}
return iterationsToEscape;
}
function exponential(complexNum, c) {
// e^z + c
return addComplex(raiseNumberToComplexPower(Math.E, complexNum), c);
}
function drawPointOnCanvas(x, y, color) {
CONTEXT.fillStyle = color;
CONTEXT.fillRect(x, y, 1, 1);
}
function getColor(iterations) {
//console.log("Iterations: "+getBaseLog(iterations+1,255));
var color = "rgb(" + Math.floor((8 * iterations) % 255) + "," + Math.floor(2 * iterations % 255) + "," + Math.floor(255 - ((8 * iterations) % 255)) + ")";
//console.log(color);
return color;
}
function coordsToComplex(coordinates) {
return {
real: ((coordinates.x / WIDTH) * RANGE + STARTPOS.real),
imaginary: ((coordinates.y / HEIGHT) * -RANGE + STARTPOS.imaginary)
};
}
function complexToCoords(c) {
return {
x: ((c.real - STARTPOS.real) / (RANGE)) * WIDTH,
y: ((c.imaginary - STARTPOS.imaginary) / -(RANGE)) * HEIGHT
};
}
function readInput(inputID) {
return document.getElementById(inputID).value;
}
.desc {
float: right;
width: 300px;
}
#juliaDraw {
border: 1px dotted;
float: left;
}
.canvasWrapper canvas {
position: absolute;
top: 0;
left: 0;
}
<div class="desc">
<h1>Julia Set Viewer</h1>
<form>
<label>Real:
<input type="text" id="realValue" value="-0.65">
</label>
<br>
<label>Imag:
<input type="text" id="imagValue" value="0">
</label>
<input type="button" onClick="drawJulia()" value="Draw">
</form>
</div>
<canvas id="juliaDraw" width=750 height=750 onClick="drawZoomJulia()"></canvas>
答案 0 :(得分:3)
这个问题实际上是一个数学问题。具体来说,您在指数函数上使用为多项式构建的转义标准。在所有情况下,您似乎都会迭代,直到迭代超过绝对值BOUNDARY
,并且BOUNDARY
在开始时设置为4。 Wikepedia图像显然使用了更大的逃逸值。在以下两个图像中,我们将逃逸半径4与逃逸半径100进行比较;较大的逃逸半径更像维基百科图像:
但是,坦率地说,维基百科的形象也是不正确的。 Julia设置图片背后的重点是尝试将复杂平面分解为两组:一组动力学简单,另一组动力学复杂。我们迭代一个多项式,直到绝对值很大,因为所有具有大绝对值的点都会逃逸到无穷大。对于您的函数exp(z)-0.65
,情况并非如此。例如,如果z=-100
,则abs(z)
相当大,但exp(-100)-0.65
非常接近-0.65
。就指数函数的绝对值而言,没有良好的逃避标准。
的效果是迭代你的函数,直到它的真实部分很大。它就像逃离复杂飞机的右侧一样。如果我们迭代你的函数直到实部超过100,我们得到类似的结果: