gensim LDA模块:在预测时始终获得统一的局部分布

时间:2016-11-01 08:44:08

标签: python lda gensim

我有一组文档,我想知道每个文档的主题分布(针对主题数量的不同值)。我从this question拿了一个玩具程序。 我首先使用了gensim提供的LDA,然后我再次提供测试数据作为我的训练数据本身,以获得训练数据中每个doc的主题分布。但我总是得到统一的话题分配。

这是我用过的玩具代码

import gensim
import logging
logging.basicConfig(filename="logfile",format='%(message)s', level=logging.INFO)


def get_doc_topics(lda, bow):
    gamma, _ = lda.inference([bow])
    topic_dist = gamma[0] / sum(gamma[0])  # normalize distribution

documents = ['Human machine interface for lab abc computer applications',
             'A survey of user opinion of computer system response time',
             'The EPS user interface management system',
             'System and human system engineering testing of EPS',
             'Relation of user perceived response time to error measurement',
             'The generation of random binary unordered trees',
             'The intersection graph of paths in trees',
             'Graph minors IV Widths of trees and well quasi ordering',
             'Graph minors A survey']

texts = [[word for word in document.lower().split()] for document in documents]
dictionary = gensim.corpora.Dictionary(texts)
id2word = {}
for word in dictionary.token2id:    
    id2word[dictionary.token2id[word]] = word
mm = [dictionary.doc2bow(text) for text in texts]
lda = gensim.models.ldamodel.LdaModel(corpus=mm, id2word=id2word, num_topics=2, update_every=1, chunksize=10000, passes=1,minimum_probability=0.0)

newdocs=["human system"]
print lda[dictionary.doc2bow(newdocs)]

newdocs=["Human machine interface for lab abc computer applications"] #same as 1st doc in training
print lda[dictionary.doc2bow(newdocs)]

这是输出:

[(0, 0.5), (1, 0.5)]
[(0, 0.5), (1, 0.5)]

我已经检查了一些更多的例子,但最终都给出了相同的等概率结果。

这是生成的日志文件(即记录器的输出)

adding document #0 to Dictionary(0 unique tokens: [])
built Dictionary(42 unique tokens: [u'and', u'minors', u'generation', u'testing', u'iv']...) from 9 documents (total 69 corpus positions)
using symmetric alpha at 0.5
using symmetric eta at 0.5
using serial LDA version on this node
running online LDA training, 2 topics, 1 passes over the supplied corpus of 9 documents, updating model once every 9 documents, evaluating perplexity every 9 documents, iterating 50x with a convergence threshold of 0.001000
too few updates, training might not converge; consider increasing the number of passes or iterations to improve accuracy
-5.796 per-word bound, 55.6 perplexity estimate based on a held-out corpus of 9 documents with 69 words
PROGRESS: pass 0, at document #9/9
topic #0 (0.500): 0.057*"of" + 0.043*"user" + 0.041*"the" + 0.040*"trees" + 0.039*"interface" + 0.036*"graph" + 0.030*"system" + 0.027*"time" + 0.027*"response" + 0.026*"eps"
topic #1 (0.500): 0.088*"of" + 0.061*"system" + 0.043*"survey" + 0.040*"a" + 0.036*"graph" + 0.032*"trees" + 0.032*"and" + 0.032*"minors" + 0.031*"the" + 0.029*"computer"
topic diff=0.539396, rho=1.000000

它说“更新太少,训练可能不会收敛”,所以我尝试将传递数增加到1000,但输出仍然相同。 (虽然它与收敛无关,但我也试过增加主题)

1 个答案:

答案 0 :(得分:2)

问题在于将变量newdocs转换为gensim文档。 dictionary.doc2bow()确实期望列表而是单词列表。您提供了一份文件清单,以便它解释人类系统"作为单词但是训练集中没有这样的单词,所以它忽略了它。为了使我的观点更清楚,请参阅以下代码的输出

import gensim
documents = ['Human machine interface for lab abc computer applications',
             'A survey of user opinion of computer system response time',
             'The EPS user interface management system',
             'System and human system engineering testing of EPS',
             'Relation of user perceived response time to error measurement',
             'The generation of random binary unordered trees',
             'The intersection graph of paths in trees',
             'Graph minors IV Widths of trees and well quasi ordering',
             'Graph minors A survey']

texts = [[word for word in document.lower().split()] for document in documents]
dictionary = gensim.corpora.Dictionary(texts)

print dictionary.doc2bow("human system".split())
print dictionary.doc2bow(["human system"])
print dictionary.doc2bow(["human"])
print dictionary.doc2bow(["foo"])

因此,要纠正上述代码,您只需根据以下内容更改newdocs

newdocs = "human system".lower().split()
newdocs = "Human machine interface for lab abc computer applications".lower().split()

哦,顺便说一下你观察到的行为,获得相同的概率,就是空文档的主题分布,即统一的分布。