我编写了代码来执行深层学习的隐藏层方法。 每个隐藏层都会分析输入数据并将其传递给其他隐藏层,直到出现分析数据为止。
可以根据需要制作尽可能多的隐藏图层。但是,如果我想制作50个隐藏层,那将花费很长时间和精力。因此,我想到了使用循环函数以节省时间和精力。然而,由于我是编程新手,因此很难。
这是程序:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
# height * width
x = tf.placeholder('float',[None, 784])
y = tf.placeholder('float')
def neural_network_model(data):
# (input_data * wehights) + biases
hidden_1_layer = {'weight' :tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'biases' :tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weight' :tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases' :tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weight' :tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases' :tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weight' :tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases' :tf.Variable(tf.random_normal([n_classes]))}
# # (input_data * wehights) + biases
l1 = tf.add(tf.matmul(data, hidden_1_layer['weight']), hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weight']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weight']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weight']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 20
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict = {x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:', epoch_loss)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('accuracy:', accuracy.eval({x:mnist.test.images, y:mnist.test.labels}))
train_neural_network(x)
这是我需要循环的部分:
def neural_network_model(data):
# (input_data * wehights) + biases
hidden_1_layer = {'weight' :tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'biases' :tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weight' :tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases' :tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weight' :tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases' :tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weight' :tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases' :tf.Variable(tf.random_normal([n_classes]))}
# # (input_data * wehights) + biases
l1 = tf.add(tf.matmul(data, hidden_1_layer['weight']), hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weight']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weight']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weight']) + output_layer['biases']
return output
答案 0 :(得分:1)
我想你想要一个像下面这样的方法来创建一个隐藏层:
def make_hidden(input_num, hidden_num):
return {'weight' :tf.Variable(tf.random_normal([input_num,
hidden_num])),
'biases' :tf.Variable(tf.random_normal([hidden_num]))}
可以像创建输出图层一样创建输出图层。
def make_output(hidden_num, output_classes):
return {'weight' :tf.Variable(tf.random_normal([hidden_num,
n_classes])),
'biases' :tf.Variable(tf.random_normal([n_classes]))}
然后你有一个列表,存储每层的节点数,从输入层开始,到最后一个隐藏层结束:
n_nodes = [0, 784, 500, 500, 500]
# |___ dummy value so that n_nodes[i] and n_nodes[i+1] stores
# the input and hidden number of the i-th hidden layer
# (1-based) because layers[0] is the input.
然后您的neural_network_model
可以简化:
def neural_network_model(data, n_nodes):
layers = []*len(n_nodes)
layers[0] = data
for i in in range(1, n_nodes-1):
hidden_i = make_hidden(n_nodes[i], n_nodes[i+1]
layers[i] = tf.add(tf.matmul(layers[i-1], hidden_i['weight']), hidden_i['biases'])
layers[i] = tf.nn.relu(layers[i])
output_layer = make_output(n_nodes[-1], n_classes)
output = tf.matmul(layers[-1], output_layer['weight']) + output_layer['biases']
return output
您可能仍需要进行细微更改才能使代码正常工作。我希望你能够了解隐藏层的循环点。