来自Dataset的RDD导致Spark 2.x出现序列化错误

时间:2016-10-29 14:32:33

标签: scala apache-spark apache-spark-dataset databricks apache-spark-2.0

我有一个使用Databricks笔记本从数据集创建的RDD。

当我尝试从中获取具体值时,它会因序列化错误消息而失败。

这是我获取数据的地方(PageCount是Case类):

val pcDf = spark.sql("SELECT * FROM pagecounts20160801")
val pcDs = pcDf.as[PageCount]
val pcRdd = pcDs.rdd

然后当我这样做时:

pcRdd.take(10)

我得到以下异常:

org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 82.0 (TID 2474) had a not serializable result: org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection

即使对数据集的同样尝试也有效:

pcDs.take(10)

编辑:

这是完整的堆栈跟踪

Serialization stack:
    - object not serializable (class: org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection, value: <function1>)
    - field (class: org.apache.spark.sql.execution.datasources.FileFormat$$anon$1, name: appendPartitionColumns, type: class org.apache.spark.sql.catalyst.expressions.UnsafeProjection)
    - object (class org.apache.spark.sql.execution.datasources.FileFormat$$anon$1, <function1>)
    - field (class: org.apache.spark.sql.execution.datasources.FileScanRDD, name: readFunction, type: interface scala.Function1)
    - object (class org.apache.spark.sql.execution.datasources.FileScanRDD, FileScanRDD[1095] at )
    - field (class: org.apache.spark.NarrowDependency, name: _rdd, type: class org.apache.spark.rdd.RDD)
    - object (class org.apache.spark.OneToOneDependency, org.apache.spark.OneToOneDependency@502bfe49)
    - writeObject data (class: scala.collection.immutable.List$SerializationProxy)
    - object (class scala.collection.immutable.List$SerializationProxy, scala.collection.immutable.List$SerializationProxy@51dc790)
    - writeReplace data (class: scala.collection.immutable.List$SerializationProxy)
    - object (class scala.collection.immutable.$colon$colon, List(org.apache.spark.OneToOneDependency@502bfe49))
    - field (class: org.apache.spark.rdd.RDD, name: org$apache$spark$rdd$RDD$$dependencies_, type: interface scala.collection.Seq)
    - object (class org.apache.spark.rdd.MapPartitionsRDD, MapPartitionsRDD[1096] at )
    - field (class: org.apache.spark.NarrowDependency, name: _rdd, type: class org.apache.spark.rdd.RDD)
    - object (class org.apache.spark.OneToOneDependency, org.apache.spark.OneToOneDependency@52ce8951)
    - writeObject data (class: scala.collection.immutable.List$SerializationProxy)
    - object (class scala.collection.immutable.List$SerializationProxy, scala.collection.immutable.List$SerializationProxy@57850f0)
    - writeReplace data (class: scala.collection.immutable.List$SerializationProxy)
    - object (class scala.collection.immutable.$colon$colon, List(org.apache.spark.OneToOneDependency@52ce8951))
    - field (class: org.apache.spark.rdd.RDD, name: org$apache$spark$rdd$RDD$$dependencies_, type: interface scala.collection.Seq)
    - object (class org.apache.spark.rdd.MapPartitionsRDD, MapPartitionsRDD[1097] at )
    - field (class: org.apache.spark.NarrowDependency, name: _rdd, type: class org.apache.spark.rdd.RDD)
    - object (class org.apache.spark.OneToOneDependency, org.apache.spark.OneToOneDependency@7e99329a)
    - writeObject data (class: scala.collection.immutable.List$SerializationProxy)
    - object (class scala.collection.immutable.List$SerializationProxy, scala.collection.immutable.List$SerializationProxy@792f3145)
    - writeReplace data (class: scala.collection.immutable.List$SerializationProxy)
    - object (class scala.collection.immutable.$colon$colon, List(org.apache.spark.OneToOneDependency@7e99329a))
    - field (class: org.apache.spark.rdd.RDD, name: org$apache$spark$rdd$RDD$$dependencies_, type: interface scala.collection.Seq)
    - object (class org.apache.spark.rdd.MapPartitionsRDD, MapPartitionsRDD[1098] at )
    - field (class: org.apache.spark.sql.Dataset, name: rdd, type: class org.apache.spark.rdd.RDD)
    - object (class org.apache.spark.sql.Dataset, Invalid tree; null:
null)
    - field (class: lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw, name: pcDs, type: class org.apache.spark.sql.Dataset)
    - object (class lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw, lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw@3482035d)
    - field (class: lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw$PageCount, name: $outer, type: class lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw)
    - object (class lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw$PageCount, PageCount(de.b,Spezial:Linkliste/Datei:Playing_card_diamond_9.svg,1,6053))
    - element of array (index: 0)
    - array (class [Llineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw$PageCount;, size 10)
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1452)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1440)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1439)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1439)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1665)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1620)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1609)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1868)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1881)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1894)
    at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1311)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
    at org.apache.spark.rdd.RDD.take(RDD.scala:1285)
    at lineb9de310f01c84f49b76c6c6295a1393c137.$read$$iw$$iw$$iw$$iw.<init>(<console>:33)
    at lineb9de310f01c84f49b76c6c6295a1393c137.$read$$iw$$iw$$iw.<init>(<console>:40)
    at lineb9de310f01c84f49b76c6c6295a1393c137.$read$$iw$$iw.<init>(<console>:42)
    at lineb9de310f01c84f49b76c6c6295a1393c137.$read$$iw.<init>(<console>:44)
    at lineb9de310f01c84f49b76c6c6295a1393c137.$eval$.$print$lzycompute(<console>:7)
    at lineb9de310f01c84f49b76c6c6295a1393c137.$eval$.$print(<console>:6)

1 个答案:

答案 0 :(得分:0)

  1. PageCount 类肯定具有非可序列化的引用(某些非瞬态非可序列化成员,或者可能是具有相同问题的父类型)。无法序列化给定的对象让Spark尝试序列化封闭范围,直到越来越多的成员,包括在某个地方的FileFormat成员, - Janino生成的投影(设计不可序列化)。 这只是坏目标对象(PageCount)序列化的副作用。
  2. 来自spark FileFormat.scala的相关代码(如果“appendPartitionColumns”一旦实现,则应使用@transient进行标记以真正避免序列化)

    // Using lazy val to avoid serialization
      private lazy val appendPartitionColumns =
        GenerateUnsafeProjection.generate(fullSchema, fullSchema)
    

    上述“非预期”序列化在常规方案中永远不会发生,直到用户定义类型序列化成功为止。

    1. Spark RDD (原始类型!Spark不知道它的全局模式)序列化涉及实现过程中的完整对象序列化(对象数据和对象“模式”,类型)。序列化的默认机制是Java序列化程序(因此您可以尝试使用Java序列化程序序列化 PageCount ,这可能会显示此类型的问题),并且可能会被更高效的Kryo序列化程序替换(这将是然而,将对象序列化为blob,以便我们将松散架构,并且将无法应用需要列访问的sqls)。这就是RDD访问触发序列化问题的原因

    2. 数据框 / 数据集是强类型的,它们绑定到Spark已知的架构。因此,对于Spark,不需要在节点之间传递对象结构,只传递数据 这就是为什么实现底层对象类型PageCount的数据集/数据帧没有问题的原因。