我正在使用以下代码执行我的第一个张量流示例。
train_x,train_y,test_x,test_y=create_feature_sets_and_labels('pro.txt','neg.txt')
n_nodes_hl1 = 1500
n_nodes_hl2 = 1500
n_nodes_hl3 = 1500
n_classes = 2
batch_size = 100
hm_epochs = 7
x = tf.placeholder('float')
y = tf.placeholder('float')
hidden_1_layer = {'f_fum':n_nodes_hl1,
'weight':tf.Variable(tf.random_normal([len(train_x[0]), n_nodes_hl1])),
'bias':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'f_fum':n_nodes_hl2,
'weight':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'bias':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'f_fum':n_nodes_hl3,
'weight':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'bias':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'f_fum':None,
'weight':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'bias':tf.Variable(tf.random_normal([n_classes])),}
def neural_network_model(data):
l1 = tf.add(tf.matmul(data,hidden_1_layer['weight']), hidden_1_layer['bias'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1,hidden_2_layer['weight']), hidden_2_layer['bias'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,hidden_3_layer['weight']), hidden_3_layer['bias'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3,output_layer['weight']) + output_layer['bias']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss = 0
i=0
while i < len(train_x):
start = i
end = i+batch_size
batch_x = np.array(train_x[start:end])
batch_y = np.array(train_y[start:end])
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
y: batch_y})
epoch_loss += c
i+=batch_size
print('Epoch', epoch+1, 'completed out of',hm_epochs,'loss:',epoch_l$ correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print(y)
print('Accuracy:',accuracy.eval({x:test_x, y:test_y}))
train_neural_network(x)
它给我测试数据的准确性。 我想要的是给我的火车模型一个输入句子,它返回我预测的标签。
我尝试了以下example
的形式#with same length as lexicon
input = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.$
output = sess.run(y, feed_dict={x :input})
它给了我以下错误。
You must feed a value for placeholder tensor 'Placeholder_1' with dtype float
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
答案 0 :(得分:2)
session.run()
的第一个参数应该是你想得到的张量。
在您的情况下,它应该是prediction
张量(因此您需要从train_neural_network
返回)。将argmax应用于其中以获得预测标签。