从文件中打开tensorflow图

时间:2016-10-28 13:20:24

标签: python tensorflow graph

我正在尝试使用tensorflow进行学习,我没有找不到如何打开并使用类型为tf.Graph的早期文件保存。像这样:

import tensorflow as tf

my_graph = tf.Graph()

with g.as_default():
    x = tf.Variable(0)
    b = tf.constant(-5)
    k = tf.constant(2)

    y = k*x + b

tf.train.write_graph(my_graph, '.', 'graph.pbtxt')

f = open('graph.pbtxt', "r")

# Do something with "f" to get my saved graph and use it below in
# tf.Session(graph=...) instead of dots

with tf.Session(graph=...) as sess:
    tf.initialize_all_variables().run()

    y1 = sess.run(y, feed_dict={x: 5})
    y2 = sess.run(y, feed_dict={x: 10})
    print(y1, y2)

3 个答案:

答案 0 :(得分:2)

您必须加载文件内容,将其解析为GraphDef然后导入。 它将导入当前图表。您可能希望用graph.as_default():上下文管理器包装它。

import tensorflow as tf
from tensorflow.core.framework import graph_pb2 as gpb
from google.protobuf import text_format as pbtf

gdef = gpb.GraphDef()

with open('my-graph.pbtxt', 'r') as fh:
    graph_str = fh.read()

pbtf.Parse(graph_str, gdef)

tf.import_graph_def(gdef)

答案 1 :(得分:0)

一个选项:查看Tensorflow MetaGraph保存/恢复支持,在此处记录:https://www.tensorflow.org/versions/r0.11/how_tos/meta_graph/index.html

答案 2 :(得分:0)

我用这种方式解决了这个问题:首先,我在图表“输出”中命名所需的计算,然后将此模型保存在下面的代码中......

import tensorflow as tf

x = tf.placeholder(dtype=tf.float64, shape=[], name="input")
a = tf.Variable(111, name="var1", dtype=tf.float64)
b = tf.Variable(-666, name="var2", dtype=tf.float64)

y = tf.add(x, a, name="output")

saver = tf.train.Saver()

with tf.Session() as sess:
    tf.initialize_all_variables().run()

    print(sess.run(y, feed_dict={x: 555}))

    save_path = saver.save(sess, "model.ckpt", meta_graph_suffix='meta', write_meta_graph=True)
    print("Model saved in file: %s" % save_path)

其次,我需要在图形中运行某些操作,我知道它的名称是“输出”。所以我只是在另一个代码中恢复模型并通过使用名称为“input”和“output”的必要图形部分来运行我恢复的计算:

import tensorflow as tf

# Restore graph to another graph (and make it default graph) and variables
graph = tf.Graph()
with graph.as_default():
    saver = tf.train.import_meta_graph("model.ckpt.meta")

    y = graph.get_tensor_by_name("output:0")
    x = graph.get_tensor_by_name("input:0")

    with tf.Session() as sess:

        saver.restore(sess, "model.ckpt")

        print(sess.run(y, feed_dict={x: 888}))

        # Variable out:
        for var in tf.all_variables():
            print("%s %.2f" % (var.name, var.eval()))