如何通过回溯来递归修改数组元素?

时间:2016-10-28 10:55:05

标签: javascript arrays recursion backtracking n-queens

我写了一种N-Queens算法,只处理垂直和水平威胁检测。因此,它更像是N-Towers解决方案的发现者。

为此,我使用递归。这是一个众所周知的算法。对于棋盘的每个方格,我放置一个塔。对于每个放置的塔,我尝试放置另一个塔(这是递归调用)。如果没有任何剩余的塔放置,则表示程序已找到解决方案并且递归级别必须返回。如果所有棋盘都与剩余的塔架交叉放置,则意味着程序没有找到解决方案并且递归级别必须返回。

我的递归函数有两个参数:必须放置的塔的数量和棋盘(一个字符串数组的数组;字符串等于" T"表示一个塔已被放置在此棋盘的正方形和" - "表示正方形是空的。)

问题

我的算法似乎找到了所有的解决方案并将它们显示为棋盘,使用" - " (并且,如果它运作良好," T")表示法。上面解释了这种表示法。

但是,即使解决方案的数量似乎正确,显示的解决方案/棋盘也只包含" - "。

我想我在递归调用中没有正确传递我的数组数组(即:棋盘)。

此问题的说明

对于2个塔和2 * 2个方格的棋盘,找到两个解决方案并且它是正常的。但只有" - "并且没有" T"出现......这就是问题所在。确实:

  

-

     

-

代码:专注于我的递归函数

    /**
     * RECURSIVE FUNCTION. If there are still towers to place, this function tries to place them. If not, it means a
     * solution has been found : it's stored in an array (external to this function).
     * If this function can't place a tower, nothing happens.
     * Else, it places it and makes the recursive call.
     * Each recursion level does this for each next (to the placed tower) chessboard's squares.
     * @param number_of_left_towers how many remaining towers to place there are (if 0, it means a solution has been
     * found)
     * @param array_array_chessboard the chessboard
     * @returns {Number} the return is not important
     */
    function placeTower(number_of_left_towers, array_array_chessboard) {
        if (number_of_left_towers == 0) {
            return solutions.push(array_array_chessboard);
        }

        for (var current_x = 0; current_x < number_of_lines; current_x++) {
            for (var current_y = 0; current_y < number_of_columns; current_y++) {
                if (array_array_chessboard[current_x][current_y] == "-" && canBePlaced(array_array_chessboard, current_x, current_y)) {
                    array_array_chessboard[current_x][current_y] = "T";
                    placeTower(number_of_left_towers - 1, array_array_chessboard);
                    array_array_chessboard[current_x][current_y] = "-";
                }
            }
        }
    }

代码:JSFiddle包含所有源代码

https://jsfiddle.net/btcj6uzp/

您还可以在下面找到相同的代码:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Recursive algorithm of the N-Towers</title>
</head>
<body>

<script type="text/javascript">
    /**
     * Finds all the solutions to the N-Towers algorithm.
     *
     * @param number_of_towers number of towers to try to place in the chessboard
     * @param number_of_lines chessboard's ones
     * @param number_of_columns chessboard's ones
     * @returns {nTowersSolutions} array containing all the solutions
     */
    function nTowersSolutions(number_of_towers, number_of_lines, number_of_columns) {
        /*
        NB
        "T" = "Tower" = presence of a tower in this square of the chessboard
        "-" = "nothing" = no tower in this square of the chessboard
        (used for both solutions displaying and finding)
         */

        var solutions = [];
        var array_array_chessboard = []; // Represents the chessboard
        for(var i = 0; i < number_of_lines; i++) {
            array_array_chessboard[i] =  new Array(number_of_columns);
            for(var j = 0; j < number_of_columns; j++) {
                array_array_chessboard[i][j] = "-"; // We initialize the chessboard with "-"
            }
        }

        /**
         * Uses HTML to display the found solutions, in the Web page
         */
        this.displaySolutions = function() {
            var body = document.body;
            solutions.forEach((array_array_chessboard) => {
                array_array_chessboard.forEach(function(array_chessboard) {
                    array_chessboard.forEach((square) => {
                        body.innerHTML += square; // New cell
                    });
                    body.innerHTML += "<br />"; // New line
                });
                body.innerHTML += "<br /><br />"; // New solution
            });
        };

        /**
         * RECURSIVE FUNCTION. If there are still towers to place, this function tries to place them. If not, it means a
         * solution has been found : it's stored in an array (external to this function).
         * If this function can't place a tower, nothing happens.
         * Else, it places it and makes the recursive call.
         * Each recursion level does this for each next (to the placed tower) chessboard's squares.
         * @param number_of_left_towers how many remaining towers to place there are (if 0, it means a solution has been
         * found)
         * @param array_array_chessboard the chessboard
         * @returns {Number} the return is not important
         */
        function placeTower(number_of_left_towers, array_array_chessboard) {
            if (number_of_left_towers == 0) {
                return solutions.push(array_array_chessboard);
            }

            for (var current_x = 0; current_x < number_of_lines; current_x++) {
                for (var current_y = 0; current_y < number_of_columns; current_y++) {
                    if (array_array_chessboard[current_x][current_y] == "-" && canBePlaced(array_array_chessboard, current_x, current_y)) {
                        array_array_chessboard[current_x][current_y] = "T";
                        placeTower(number_of_left_towers - 1, array_array_chessboard);
                        array_array_chessboard[current_x][current_y] = "-";
                    }
                }
            }
        }

        /**
         * Can this tower be placed ?
         * @param array_array_chessboard
         * @param new_x
         * @param new_y
         * @returns {boolean}
         */
        function canBePlaced(array_array_chessboard, new_x, new_y) {
            for(var i = 0; i < array_array_chessboard.length; i++) {
                for(var z = 0; z < array_array_chessboard[i].length; z++) {
                    if(array_array_chessboard[i][z] == "T"
                            && (
                                    new_x == z || new_y == i // Horizontal and vertical checks
                            )
                    ) {
                        return false;
                    }
                }
            }
            return true;
        }

        placeTower(number_of_towers, array_array_chessboard);
        return this;
    }

    // <!-- CHANGE THESE PARAMETERS' VALUE TO TEST -->
    nTowersSolutions(2, 2, 2).displaySolutions();
</script>

</body>
</html>

2 个答案:

答案 0 :(得分:2)

你的问题很可能是只有一个(二维)数组,这是全局的,所以最后你的解决方案都指向同一个数组,它将是我们递归函数完全返回之前的最后一个状态。

array_array_chessboard[current_x][current_y] = "T";
placeTower(number_of_left_towers - 1, array_array_chessboard);
array_array_chessboard[current_x][current_y] = "-";

如果我正确地理解了上述内容,那么(循环所有位置,ish)
1)将T分配给位置
2)在该位置解决所有带有T的板 3)将“ - ”分配给先前的位置

所以最后你有一个充满“ - ”的数组,所有解决方案都指向同一个数组

尝试替换

return solutions.push(array_array_chessboard);

通过

return solutions.push(JSON.decode(JSON.encode(array_array_chessboard)));

上面将对您的解决方案进行深层复制,虽然它可能不是制作深层复制的最有效方式,但它很简单。如果您的算法需要非常快,您可能希望以更快的方式克隆解决方案。

虽然我不能保证这会起作用,因为我无法操作你的小提琴

(为了便于阅读,我建议你这样写下你的回报:)

solutions.push(JSON.parse(JSON.stringify(array_array_chessboard)));
return;

编辑:为什么要在Array::from上使用JSON.parse + stringify:

如果你只是做

solutions.push(Array.from(array_array_chessboard));

第二维仍然会引用相同的数组,而这毕竟是存储字符串数据的地方。

演示(请注意,您需要在IE中填充Array.from,或者只是尝试使用其他浏览器):

var arr1 = ["a"];
var arr2 = ["b"];
var metaArr = [arr1, arr2];
console.log(metaArr[0][0], metaArr[1][0]); // "a b"

var metaArrClone = Array.from(metaArr);
var metaArrClone[0][0] = "c";
console.log(metaArrClone[0][0]); // "c"
console.log(metaArr[0][0]); // "c"

var metaArrClone2 = JSON.parse(JSON.stringify(metaArr));
console.log(metaArrClone2[0][0]); // "c"
metaArrClone2[0][0] = "d";
console.log(metaArrClone2[0][0]); // "d"
console.log(metaArr[0][0]); // "c"

答案 1 :(得分:0)

您不需要将解决方案保留在递归函数之外。如果将解决方案保留在递归函数中并返回所有解决方案,可能会更好,因此您无需担心函数外的状态。

当然,如果你必须在之前使用finded解决方案,那么递归函数会返回(也许你有一个很大的cheesboard)你的解决方案可能会更好。或者你可以使用发电机。

也可以将这种逻辑与ui分开,所以首先关注解决方案,然后尝试在浏览器中或在你想要的地方绘制结果,或者反过来。

您可以从下面的代码开始,但请在使用之前检查它是否确实找到了所有解决方案。

'use strict'
/* Finds all the solutions to the N-Towers algorithm.
 *
 * @param number_of_towers number of towers to try to place in the chessboard
 * @param number_of_lines chessboard's ones
 * @param number_of_columns chessboard's ones
 * @returns {nTowersSolutions} array containing all the solutions
 * "Tower" = presence of a tower in this square of the chessboard
 * "Nothing" = no tower in this square of the chessboard
 * "Blocked" = the cell is blocked
 */

function nTowersSolutions(number_of_towers, number_of_lines, number_of_columns) {
  var chessboard = _initChessboard(number_of_lines, number_of_columns);
  var solutions = _findAllSolution(chessboard, number_of_towers);
  return solutions;
}

// nuber, * -> array
var _newArrFromLenAndElement = function(length, element) {
  return Array.apply(null, Array(length)).map(function(){ return element; }); 
};

// number, number -> cheesboard
var _initChessboard = function(number_of_lines, number_of_columns) {
  var oneColumnChessboard = _newArrFromLenAndElement(number_of_lines, []);
  var chessboard = oneColumnChessboard.map(function() {                                                                                                                                                     
    var line = _newArrFromLenAndElement(number_of_columns, 'Nothing');
    return line;
  }); 
  return chessboard;
};

// chessboard, line_index, column_index -> chessboard
var _placeTower = function(chessboard, line_index, column_index) {
  var ff = chessboard.map(function(line, index) {
    if (index === line_index) {
      return line.map(function() { return 'Blocked'; }); 
    }   
    else {
      return line.map(function(x, index){
        if(index===column_index){return'Blocked';}
        else{return x;} 
      }); 
    }   
  }); 
  ff[line_index][column_index] = 'Tower';
    return ff; 
};

// array[][] -> array[]
var _flatten = function(arr) {
  return [].concat.apply([], arr);
};

// *, array -> boolean
var _isInArray = function(value, array) {
    return array.indexOf(value) > -1; 
};

// cheesboard, numberm number -> array
// this could be a bruteforce recursive solution at your problem ( actually you have to check if
// it is correct )
// we need _lines_done for don't look for solutions already finded (if you have tried all the
// pattern with a tower in the first line you don't want try to place a tower in the first line)
var _findAllSolution = function(chessboard, number_of_towers, _lines_done, _deep) {
  _lines_done = _lines_done || [];
  _deep = _deep || 0;

  if (number_of_towers === 0){
    return chessboard;
  }

  //for all the cells in the ceesboard try to place a tower
  var solutions = chessboard.map(function(line, line_index) {
    var solution = line.map(function(cell, column_index) {
      if (_isInArray(line_index, _lines_done)) {
        return 'alreadyVisitedLine';
      }
      else if (cell === 'Nothing') {
        var fulfilledChessboard = _placeTower(chessboard, line_index, column_index);
        if (line_index > 0 && _deep === 0 && !(_isInArray(line_index - 1, _lines_done))) {
          _lines_done.push(line_index - 1);
        }
        return _findAllSolution(fulfilledChessboard, number_of_towers -1, _lines_done, _deep + 1);
      }
      else {
        return 'DeadEnd!';
      }
    });
      return _flatten(solution);
  });

  var flatSolutions = _flatten(solutions);
  //you should .filter the solutions
  return _flatten(solutions);
};

var h = nTowersSolutions(2,2,2)
console.log(h)