我很困惑为什么以下代码会返回此错误消息:
Traceback (most recent call last):
File "/Users/Desktop/TestPython/tftest.py", line 46, in <module>
main(sys.argv[1:])
File "/Users/Desktop/TestPython/tftest.py", line 35, in main
result = tf.while_loop(Cond_f2, Body_f1, loop_vars=loopvars)
File "/Users/Desktop/HPC_LIB/TENSORFLOW/lib/python2.7/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2518, in while_loop
result = context.BuildLoop(cond, body, loop_vars, shape_invariants)
File "/Users/Desktop/HPC_LIB/TENSORFLOW/lib/python2.7/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2356, in BuildLoop
pred, body, original_loop_vars, loop_vars, shape_invariants)
File "/Users/Desktop/HPC_LIB/TENSORFLOW/lib/python2.7/site-packages/tensorflow/python/ops/control_flow_ops.py", line 2292, in _BuildLoop
c = ops.convert_to_tensor(pred(*packed_vars))
File "/Users/Desktop/TestPython/tftest.py", line 18, in Cond_f2
boln = tf.less(tf.cast(tf.constant(ind), dtype=tf.int32), tf.cast(tf.constant(N), dtype=tf.int32))
File "/Users/Desktop/HPC_LIB/TENSORFLOW/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 163, in constant
tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape))
File "/Users/Desktop/HPC_LIB/TENSORFLOW/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 353, in make_tensor_proto
_AssertCompatible(values, dtype)
File "/Users/Desktop/HPC_LIB/TENSORFLOW/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 287, in _AssertCompatible
raise TypeError("List of Tensors when single Tensor expected")
TypeError: List of Tensors when single Tensor expected
如果有人可以帮我修复此错误,我将不胜感激。谢谢!
from math import *
import numpy as np
import sys
import tensorflow as tf
def Body_f1(n, ind, N, T):
# Compute trace
a = tf.trace(tf.random_normal(0.0, 1.0, (n, n)))
# Update trace
a = tf.cast(a, dtype=T.dtype)
T = tf.scatter_update(T, ind, a)
# Update index
ind = ind + 1
return n, ind, N, T
def Cond_f2(n, ind, N, T):
boln = tf.less(tf.cast(tf.constant(ind), dtype=tf.int32), tf.cast(tf.constant(N), dtype=tf.int32))
return boln
def main(argv):
# Open tensorflow session
sess = tf.Session()
# Parameters
N = 10
T = tf.zeros((N), dtype=tf.float64)
n = 4
ind = 0
# While loop
loopvars = [n, ind, N, T]
result = tf.while_loop(Cond_f2, Body_f1, loop_vars=loopvars, shape_invariants=None, \
parallel_iterations=1, back_prop=False, swap_memory=False, name=None)
trace = result[3]
trace = sess.run(trace)
print trace
print 'Done!'
# Close tensorflow session
if session==None:
sess.close()
if __name__ == "__main__":
main(sys.argv[1:])
更新:我添加了完整的错误消息。我不知道为什么我收到此错误消息。 loop_vars是否期望单个张量而不是张量列表?我希望不会。
答案 0 :(得分:2)
tf.constant需要一个非Tensor值,如Python列表或numpy数组。你可以通过迭代tf.constant来获得相同的错误,就像在tf.constant(tf.constant(5。))中一样。删除这些调用可修复第一个错误。这是一个非常糟糕的错误消息,因此我鼓励您file a bug on Github。
看起来random_normal的参数有点混乱;关键字参数有助于避免这样的问题:
tf.random_normal(mean=0.0, stddev=1.0, shape=(n, n))
最后,scatter_update需要一个变量。看起来TensorArray可能是您在这里寻找的内容(或隐式使用TensorArray的higher level looping constructs之一)。