我有一个火花数据框架,我想以0.60,0.20,0.20的比例划分为火车,验证和测试。
我使用了以下代码:
def data_split(x):
global data_map_var
d_map = data_map_var.value
data_row = x.asDict()
import random
rand = random.uniform(0.0,1.0)
ret_list = ()
if rand <= 0.6:
ret_list = (data_row['TRANS'] , d_map[data_row['ITEM']] , data_row['Ratings'] , 'train')
elif rand <=0.8:
ret_list = (data_row['TRANS'] , d_map[data_row['ITEM']] , data_row['Ratings'] , 'test')
else:
ret_list = (data_row['TRANS'] , d_map[data_row['ITEM']] , data_row['Ratings'] , 'validation')
return ret_list
split_sdf = ratings_sdf.map(data_split)
train_sdf = split_sdf.filter(lambda x : x[-1] == 'train').map(lambda x :(x[0],x[1],x[2]))
test_sdf = split_sdf.filter(lambda x : x[-1] == 'test').map(lambda x :(x[0],x[1],x[2]))
validation_sdf = split_sdf.filter(lambda x : x[-1] == 'validation').map(lambda x :(x[0],x[1],x[2]))
print "Total Records in Original Ratings RDD is {}".format(split_sdf.count())
print "Total Records in training data RDD is {}".format(train_sdf.count())
print "Total Records in validation data RDD is {}".format(validation_sdf.count())
print "Total Records in test data RDD is {}".format(test_sdf.count())
#help(ratings_sdf)
Total Records in Original Ratings RDD is 300001
Total Records in training data RDD is 180321
Total Records in validation data RDD is 59763
Total Records in test data RDD is 59837
我的原始数据框是ratings_sdf,我用它来传递执行拆分的映射器函数。
如果您检查列车的总和,验证和测试不总和拆分(原始评级)计数。这些数字在每次运行代码时都会发生变化。
剩下的记录在哪里以及为什么总和不相等?
答案 0 :(得分:22)
TL; DR 如果您要分割DataFrame
,请使用randomSplit
method:
ratings_sdf.randomSplit([0.6, 0.2, 0.2])
您的代码在多个级别上都是错误的,但有两个基本问题使其无法修复:
Spark变换可以被任意次数评估,你使用的函数应该是refereically透明和无副作用。您的代码会多次评估split_sdf
,并且您使用有状态RNG data_split
,因此每次结果都不同。
这会导致您描述每个孩子看到父RDD的不同状态的行为。
您没有正确初始化RNG,因此您获得的随机值不是独立的。