我有一个用Scala编写的Spark程序,它从HDFS读取一个CSV文件,计算一个新列并将其保存为镶木地板文件。我在YARN集群中运行该程序。但每当我尝试启动它时,执行程序在某些时候都会因此错误而失败。
你能帮我找一下可能导致这个错误的原因吗?
从执行者身上登录
16/10/27 15:58:10 WARN storage.BlockManager: Putting block rdd_12_225 failed due to an exception
16/10/27 15:58:10 WARN storage.BlockManager: Block rdd_12_225 could not be removed as it was not found on disk or in memory
16/10/27 15:58:10 ERROR executor.Executor: Exception in task 225.0 in stage 4.0 (TID 465)
java.io.IOException: Stream is corrupted
at org.apache.spark.io.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:211)
at org.apache.spark.io.LZ4BlockInputStream.read(LZ4BlockInputStream.java:125)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read(BufferedInputStream.java:265)
at java.io.DataInputStream.readInt(DataInputStream.java:387)
at org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.readSize(UnsafeRowSerializer.scala:113)
at org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.<init>(UnsafeRowSerializer.scala:120)
at org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3.asKeyValueIterator(UnsafeRowSerializer.scala:110)
at org.apache.spark.shuffle.BlockStoreShuffleReader$$anonfun$3.apply(BlockStoreShuffleReader.scala:66)
at org.apache.spark.shuffle.BlockStoreShuffleReader$$anonfun$3.apply(BlockStoreShuffleReader.scala:62)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:370)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$3$$anon$1.next(InMemoryRelation.scala:118)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$3$$anon$1.next(InMemoryRelation.scala:110)
at org.apache.spark.storage.memory.MemoryStore.putIteratorAsValues(MemoryStore.scala:214)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:935)
at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:926)
at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:866)
at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:926)
at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:670)
at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:330)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:281)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:319)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:283)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: net.jpountz.lz4.LZ4Exception: Error decoding offset 15385 of input buffer
at net.jpountz.lz4.LZ4JNIFastDecompressor.decompress(LZ4JNIFastDecompressor.java:39)
at org.apache.spark.io.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:205)
... 41 more
编辑:
使用了代码
var df = spark.read.option("header", "true").option("inferSchema", "true").option("treatEmptyValuesAsNulls", "true").csv(hdfsFileURLIn).repartition(nPartitions)
df.printSchema()
df = df.withColumn("ipix", a2p(df.col(deName), df.col(raName))).persist(StorageLevel.MEMORY_AND_DISK)
df.repartition(nPartitions, $"ipix").write.mode("overwrite").option("spark.hadoop.dfs.replication", 1).parquet(hdfsFileURLOut)
用户函数a2p只需要两个Double并返回另一个double
我需要说这对于相对较小的CSV(~1Go)运行良好,但每次都会发生更大的错误(~15Go)
编辑2: 根据建议我禁用了重新分区,并使用了StorageLevel.DISK_ONLY
有了这个,我没有得到Putting block rdd _ *****因异常而失败,但仍然存在与LZ4相关的异常(Stream已损坏):
16/10/28 07:53:00 ERROR util.Utils: Aborting task
java.io.IOException: Stream is corrupted
at org.apache.spark.io.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:211)
at org.apache.spark.io.LZ4BlockInputStream.available(LZ4BlockInputStream.java:109)
at java.io.BufferedInputStream.read(BufferedInputStream.java:353)
at java.io.DataInputStream.read(DataInputStream.java:149)
at org.spark_project.guava.io.ByteStreams.read(ByteStreams.java:899)
at org.spark_project.guava.io.ByteStreams.readFully(ByteStreams.java:733)
at org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:127)
at org.apache.spark.sql.execution.UnsafeRowSerializerInstance$$anon$3$$anon$1.next(UnsafeRowSerializer.scala:110)
at scala.collection.Iterator$$anon$12.next(Iterator.scala:444)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.util.CompletionIterator.next(CompletionIterator.scala:30)
at org.apache.spark.InterruptibleIterator.next(InterruptibleIterator.scala:43)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply$mcV$sp(WriterContainer.scala:254)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply(WriterContainer.scala:252)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer$$anonfun$writeRows$1.apply(WriterContainer.scala:252)
at org.apache.spark.util.Utils$.tryWithSafeFinallyAndFailureCallbacks(Utils.scala:1345)
at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:258)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(InsertIntoHadoopFsRelationCommand.scala:143)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:70)
at org.apache.spark.scheduler.Task.run(Task.scala:86)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: net.jpountz.lz4.LZ4Exception: Error decoding offset 12966 of input buffer
at net.jpountz.lz4.LZ4JNIFastDecompressor.decompress(LZ4JNIFastDecompressor.java:39)
at org.apache.spark.io.LZ4BlockInputStream.refill(LZ4BlockInputStream.java:205)
... 25 more
编辑3:我设法通过删除第二个重新分区(使用列ipix重新分区的重新分区)启动它而没有任何错误。我将在此方法的文档中进一步查看
编辑4:这很奇怪,偶尔会有一些执行者因分段错误而失败:
#
# A fatal error has been detected by the Java Runtime Environment:
#
# SIGSEGV (0xb) at pc=0x00007f48d8a47f2c, pid=3501, tid=0x00007f48cc60c700
#
# JRE version: Java(TM) SE Runtime Environment (8.0_102-b14) (build 1.8.0_102-b14)
# Java VM: Java HotSpot(TM) 64-Bit Server VM (25.102-b14 mixed mode linux-amd64 compressed oops)
# Problematic frame:
# J 4713 C2 org.apache.spark.unsafe.types.UTF8String.hashCode()I (18 bytes) @ 0x00007f48d8a47f2c [0x00007f48d8a47e60+0xcc]
#
# Core dump written. Default location: /tmp/hadoop-root/nm-local-dir/usercache/root/appcache/application_1477580152295_0008/container_1477580152295_0008_01_000006/core or core.3501
#
# An error report file with more information is saved as:
# /tmp/hadoop-root/nm-local-dir/usercache/root/appcache/application_1477580152295_0008/container_1477580152295_0008_01_000006/hs_err_pid3501.log
#
# If you would like to submit a bug report, please visit:
# http://bugreport.java.com/bugreport/crash.jsp
#
我检查了内存,所有执行程序总是有足够的可用内存(至少6Go)
编辑4:所以我测试了多个文件并且执行总是成功但有时执行器失败(上面的错误)并且由YARN再次启动
答案 0 :(得分:0)
您使用的是哪个版本的lz4-java?这可能与版本1.1.2中修复的问题有关 - 请参阅此bug report
另外,我很好奇你的功能a2p。理想情况下,它应该将两个Column对象作为输入,而不仅仅是双打(除非您将其注册为UDF)。
答案 1 :(得分:0)
答案 2 :(得分:0)
我在SPARK_HOME路径的jars目录中将lz4-java jar替换为它的最新版本(lz4-java-1.5.0.jar)。这对我有用。