我有以下函数来计算字符串中的单词并提取顶部" n":
功能
def count_words(s, n):
"""Return the n most frequently occuring words in s."""
#Split words into list
wordlist = s.split()
#Count words
counts = Counter(wordlist)
#Get top n words
top_n = counts.most_common(n)
#Sort by first element, if tie by second
top_n.sort(key=lambda x: (-x[1], x[0]))
return top_n
因此它按出现排序,如果按字母顺序排列。 以下示例:
print count_words("cat bat mat cat cat mat mat mat bat bat cat", 3)
有效(显示[('cat', 4), ('mat', 4), ('bat', 3)]
)
print count_words("betty bought a bit of butter but the butter was bitter", 3)
不起作用(显示[('butter', 2), ('a', 1), ('bitter', 1)]
但应该betty
而不是bitter
,因为它们被绑定且be...
在bi...
之前1}})
print count_words("betty bought a bit of butter but the butter was bitter", 6)
有效(在[('butter', 2), ('a', 1), ('betty', 1), ('bitter', 1), ('but', 1), ('of', 1)]
之前显示betty
bitter
可能导致什么(字长可能?)以及如何解决?
答案 0 :(得分:10)
问题不是sort
来电,而是most_common
。 Counter
实现为哈希表,因此它使用的顺序是任意。当你要求most_common(n)
时,它会返回n
最常见的单词,如果有联系,它只会随意决定返回哪一个!
解决此问题的最简单方法是避免使用most_common
并直接使用列表:
top_n = sorted(counts.items(), key=lambda x: (-x[1], x[0]))[:n]
答案 1 :(得分:3)
您要求排在前3位,因此您可以在选择特定排序顺序中的项目之前剪切数据。
不是让most_common()
预先排序然后重新排序,而是使用heapq
按自定义条件排序(提供的n
小于实际存储区的数量):< / p>
import heapq
def count_words(s, n):
"""Return the n most frequently occuring words in s."""
counts = Counter(s.split())
key = lambda kv: (-kv[1], kv[0])
if n >= len(counts):
return sorted(counts.items(), key=key)
return heapq.nsmallest(n, counts.items(), key=key)
在Python 2上,您可能希望使用iteritems()
而不是items()
进行上述调用。
这会重新创建Counter.most_common()
method,但会使用更新后的密钥。与原始版本一样,使用heapq
确保它绑定到O(NlogK)性能而不是O(NlogN)(使用N
桶的数量,并且K是您想要查看的最高元素数)。
演示:
>>> count_words("cat bat mat cat cat mat mat mat bat bat cat", 3)
[('cat', 4), ('mat', 4), ('bat', 3)]
>>> count_words("betty bought a bit of butter but the butter was bitter", 3)
[('butter', 2), ('a', 1), ('betty', 1)]
>>> count_words("betty bought a bit of butter but the butter was bitter", 6)
[('butter', 2), ('a', 1), ('betty', 1), ('bit', 1), ('bitter', 1), ('bought', 1)]
快速的性能比较(在Python 3.6.0b1上):
>>> from collections import Counter
>>> from heapq import nsmallest
>>> from random import choice, randrange
>>> from timeit import timeit
>>> from string import ascii_letters
>>> sentence = ' '.join([''.join([choice(ascii_letters) for _ in range(randrange(3, 15))]) for _ in range(1000)])
>>> counts = Counter(sentence) # count letters
>>> len(counts)
53
>>> key = lambda kv: (-kv[1], kv[0])
>>> timeit('sorted(counts.items(), key=key)[:3]', 'from __main__ import counts, key', number=100000)
2.119404911005404
>>> timeit('nsmallest(3, counts.items(), key=key)', 'from __main__ import counts, nsmallest, key', number=100000)
1.9657367869949667
>>> counts = Counter(sentence.split()) # count words
>>> len(counts)
1000
>>> timeit('sorted(counts.items(), key=key)[:3]', 'from __main__ import counts, key', number=10000) # note, 10 times fewer
6.689963405995513
>>> timeit('nsmallest(3, counts.items(), key=key)', 'from __main__ import counts, nsmallest, key', number=10000)
2.902360848005628
答案 2 :(得分:1)
您可以通过执行.most_common()
,然后排序然后切片结果来修复它,而不是将n
提供给most_common
:
def count_words(s, n):
"""Return the n most frequently occuring words in s."""
#Split words into list
wordlist = s.split()
#Count words
counts = Counter(wordlist)
#Sort by frequency
top = counts.most_common()
#Sort by first element, if tie by second
top.sort(key=lambda x: (-x[1], x[0]))
return top[:n]