我正在试用tf.contrib.learn Quickstart,它在使用教程中给出的代码时有效。但是,如果我将训练和测试集改为只有2个分类(即只有2个虹膜种类),我得到以下输出和错误:
WARNING:tensorflow:Change warning: default value of `enable_centered_bias` will change after 2016-10-09. It will be disabled by default.Instructions for keeping existing behaviour:
Explicitly set `enable_centered_bias` to 'True' if you want to keep existing behaviour.
WARNING:tensorflow:Using default config.
Traceback (most recent call last):
File "test.py", line 34, in <module>
steps=2000)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/learn/python/learn/estimators/dnn.py", line 435, in fit
max_steps=max_steps)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 333, in fit
max_steps=max_steps)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 662, in _train_model
train_op, loss_op = self._get_train_ops(features, targets)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 963, in _get_train_ops
_, loss, train_op = self._call_model_fn(features, targets, ModeKeys.TRAIN)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 944, in _call_model_fn
return self._model_fn(features, targets, mode=mode, params=self.params)
File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/learn/python/learn/estimators/dnn.py", line 258, in _dnn_classifier_model_fn
weight=_get_weight_tensor(features, weight_column_name))
File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/losses/python/losses/loss_ops.py", line 329, in sigmoid_cross_entropy
logits.get_shape().assert_is_compatible_with(multi_class_labels.get_shape())
File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/tensor_shape.py", line 750, in assert_is_compatible_with
raise ValueError("Shapes %s and %s are incompatible" % (self, other))
ValueError: Shapes (?, 1) and (?,) are incompatible
我改变的唯一代码是创建分类器(将n_classes
从3更改为2):
# Build 3 layer DNN with 10, 20, 10 units respectively.
classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=2,
model_dir="/tmp/iris_model")
有人可以解释为什么这不起作用吗?
答案 0 :(得分:1)
我遇到了同样的错误,显然这是来自tensorflow的错误,请参阅下面的链接以获取更多信息:
Shape error using Tensorflow (tf.learn, DNNClassifier)
我将set n_classes修复为3,即使我只有2个类