我在.txt文件中有以下结构:
/path/to/image x y /path/to/image x y
其中x和y是整数。
我现在要做的是:创建一个在Caffe中使用的hdf5文件('train.prototxt'
)
我的Python代码如下所示:
import h5py, os
import caffe
import numpy as np
SIZE = 256
with open( 'train.txt', 'r' ) as T :
lines = T.readlines()
count_files = 0
split_after = 1000
count = -1
# If you do not have enough memory split data into
# multiple batches and generate multiple separate h5 files
X = np.zeros( (split_after, 3, SIZE, SIZE), dtype='f4' )
y1 = np.zeros( (split_after, 1), dtype='f4' )
y2 = np.zeros( (split_after, 1), dtype='f4' )
for i,l in enumerate(lines):
count += 1
sp = l.split(' ')
img = caffe.io.load_image( sp[0] )
img = caffe.io.resize( img, (3, SIZE, SIZE) )
X[count] = img
y1[count] = float(sp[1])
y2[count] = float(sp[2])
if (count+1) == split_after:
with h5py.File('train_' + str(count_files) + '.h5','w') as H:
H.create_dataset( 'X', data=X ) # note the name X given to the dataset!
H.create_dataset( 'y1', data=y1 )
H.create_dataset( 'y2', data=y2 )
X = np.zeros( (split_after, 3, SIZE, SIZE), dtype='f4' )
y1 = np.zeros( (split_after, 1), dtype='f4' )
y2 = np.zeros( (split_after, 1), dtype='f4' )
with open('train_h5_list.txt','a') as L:
L.write( 'train_' + str(count_files) + '.h5') # list all h5 files you are going to use
count_files += 1
count = 0
事实上我想估算角度。这意味着我有两个类别,一个用于垂直角度,一个用于水平角度。第一类的范围为0-10度,第二类的范围为10-20,依此类推(水平和垂直角度)。
.prototxt怎么样?这是我的最后一层
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 36
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc8"
bottom: "y"
top: "loss"
}
答案 0 :(得分:0)
您还需要修改输入图层:现在您有三个top
s:
layer {
type: "HDF5Data"
name: "data"
top: "X"
top: "y1"
top: "y2"
# ... params and phase
}
现在,top
的{{1}}充当您数据的“高级描述符”,您希望从中预测fc7
和y1
。因此,在图层y2
之后,您应该:
fc7
和
layer {
type: "InnerProduct"
name: "class_y1"
bottom: "fc7"
top: "class_y1"
#... params num_output: 36
}
layer {
type: "SoftmaxWithLoss" # to be replaced with "Softmax" in deploy
name: "loss_y1"
bottom: "class_y1"
bottom: "y1"
top: "loss_y1"
# optionally, loss_weight
}