我一直在与OpenCV合作,在Raspberry Pi和基于Windows操作系统的PC上拼接两个图像。
#include <stdio.h>
#include <iostream>
#include "opencv2/opencv.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
int main (int argc, char** argv) {
Mat image_1 = imread (argv[1]);
Mat image_2 = imread (argv[2]);
Mat gray_image_1;
Mat gray_image_2;
cvtColor (image_1, gray_image_1, CV_RGB2GRAY);
cvtColor (image_2, gray_image_2, CV_RGB2GRAY);
// Check if image files can be read
if (!gray_image_1.data) {
std::cout << "Error Reading Image 1" << std::endl;
return 0;
}
if (!gray_image_2.data) {
std::cout << "Error Reading Image 2" << std::endl;
return 0;
}
// Detect the keypoints using SURF Detector
// Based from Anna Huaman's 'Features2D + Homography to find a known object' Tutorial
int minHessian = 50;
SurfFeatureDetector detector (minHessian);
std::vector <KeyPoint> keypoints_object, keypoints_scene;
detector.detect (gray_image_2, keypoints_object);
detector.detect (gray_image_1, keypoints_scene);
// Calculate Feature Vectors (descriptors)
// Based from Anna Huaman's 'Features2D + Homography to find a known object' Tutorial
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute (gray_image_2, keypoints_object, descriptors_object);
extractor.compute (gray_image_1, keypoints_scene, descriptors_scene);
// Matching descriptor vectors using FLANN matcher
// Based from Anna Huaman's 'Features2D + Homography to find a known object' Tutorial
FlannBasedMatcher matcher;
std::vector <DMatch> matches;
matcher.match (descriptors_object, descriptors_scene, matches);
double max_dist = 0;
double min_dist = 100;
// Quick calculation of max and min distances between keypoints
// Based from Anna Huaman's 'Features2D + Homography to find a known object' Tutorial
for (int i = 0; i < descriptors_object.rows; i++) {
double dist = matches[i].distance;
if (dist < min_dist) {
min_dist = dist;
}
}
// Use matches that have a distance that is less than 3 * min_dist
std::vector <DMatch> good_matches;
for (int i = 0; i < descriptors_object.rows; i++){
if (matches[i].distance < 3 * min_dist) {
good_matches.push_back (matches[i]);
}
}
std::vector <Point2f> obj;
std::vector <Point2f> scene;
for (int i = 0; i < good_matches.size(); i++) {
// Get the keypoints from the good matches
obj.push_back (keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back (keypoints_scene[good_matches[i].trainIdx].pt);
}
// Find the Homography Matrix
Mat H = findHomography (obj, scene, CV_RANSAC);
// Use the Homography Matrix to warp the images
cv::Mat result;
warpPerspective (image_2, result, H, cv::Size (image_2.cols + image_1.cols, image_2.rows));
cv::Mat half (result, cv::Rect (0, 0, image_1.cols, image_1.rows));
image_1.copyTo (half);
// Write image
imwrite("Update.jpg", result);
waitKey (0);
return 0;
}
我用作输入的两个图像导致成功。但是,仅当这两个图像具有<= 1080 * 1080像素的分辨率时。
对于1440 * 1440和1944 * 1944的分辨率,我发现findHomography无法正常运行,因为我不再获得超过3个好的匹配。 findHomography至少需要4次匹配。
我试过......
cv :: resize(输入图像) - 导致没有分辨率大小的图像为findHomography产生足够好的匹配。
min Hessian增加或减少 - 没有变化
最小距离增加或减少 - 没有变化
注意:两个图像重叠并具有相同的尺寸。
有没有人能解决这个问题?我花了几个小时研究这个问题,结果只是得出OpenCV图像拼接无法处理高分辨率图像的结论。
下面我将为希望提供帮助的人提供两张高分辨率图像。
我使用的是OpenCV 2.4.13而不是新的OpenCV 3.1.0。
答案 0 :(得分:3)
根据Martin Matilla的评论:
“你确定你没有丢弃距离过滤部分的好匹配吗?if(匹配[i] .distance&lt; 3 * min_dist)” - Martin Matilla 53分钟前
解决方案确实位于3 * min_dist。我将值“3”更改为“4”以允许处理高分辨率图像。
注意:最初我将'3'更改为'30'并发现第二个输入图像按预期失真。 &lt; - 只是为了让任何人知道:)