无法读取,以后在Apache Spark中查询文本文件

时间:2016-10-25 06:52:22

标签: apache-spark apache-spark-sql spark-dataframe

所以我尝试使用我们提供的数据集来实现示例Spark Programming Example。它是一个由|分隔的文件。但是,即使遵循给定的说明,它也会引发以下错误。

我可以看到它无法将一个实例的对象“转换”为另一个实例的对象,以及如何处理该场景的任何建议。

Caused by: java.lang.ClassCastException: cannot assign instance of scala.collection.immutable.List$SerializationProxy to field org.apache.spark.rdd.RDD.org$apache$spark$rdd$RDD$$dependencies_ of type scala.collection.Seq in instance of org.apache.spark.rdd.MapPartitionsRDD
    at java.io.ObjectStreamClass$FieldReflector.setObjFieldValues(ObjectStreamClass.java:2133)
    at java.io.ObjectStreamClass.setObjFieldValues(ObjectStreamClass.java:1305)
    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2024)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2018)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.readObject(ObjectInputStream.java:373)
    at scala.collection.immutable.List$SerializationProxy.readObject(List.scala:479)
    at sun.reflect.GeneratedMethodAccessor3.invoke(Unknown Source)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1058)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1909)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2018)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2018)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.readObject(ObjectInputStream.java:373)
    at scala.collection.immutable.List$SerializationProxy.readObject(List.scala:479)
    at sun.reflect.GeneratedMethodAccessor3.invoke(Unknown Source)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1058)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1909)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2018)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2018)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.readObject(ObjectInputStream.java:373)
    at scala.collection.immutable.List$SerializationProxy.readObject(List.scala:479)
    at sun.reflect.GeneratedMethodAccessor3.invoke(Unknown Source)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at java.io.ObjectStreamClass.invokeReadObject(ObjectStreamClass.java:1058)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1909)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2018)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2018)
    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1942)
    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1808)
    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1353)
    at java.io.ObjectInputStream.readObject(ObjectInputStream.java:373)
    at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
    at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:114)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
    at org.apache.spark.scheduler.Task.run(Task.scala:85)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

还有一个附属问题,什么是镶木地板?

编辑:所以我仍然不确定出了什么问题,现在我已经开始了另一个项目。但我觉得我试图摄取的数据有些恶魔。请不要低估这个问题。一旦我对问题有了更清楚的了解,我将接受以下批次中的最佳答案或我自己回答问题(如果是这样的话)。

2 个答案:

答案 0 :(得分:0)

要使用强制转换api,您需要使用$“columnname”.cast()api

在数据框内的列对象上调用它。

Parquet是Hadoop常用的文件格式。它是一种柱状数据存储格式。这意味着我们将列存储在一起而不是行。这将有助于后续阅读,只需要我们阅读重要的列。因此,如果您有10个列表,并且您只想读取其中的2个,我们可以利用镶木地板(或orc)格式,只读取重要性列,跳过其他8个。

答案 1 :(得分:0)

有更好的选项可用于读取分隔文件。你只需要额外的库。

这方面有好的文件。检查这个link

Java

中的

Dataset<Row> people  =  spark.read()
                .format("com.databricks.spark.csv")
                .schema(customSchema)    
                .option("header", "true").option("delimiter", "|")
                .load("file.csv");
Scala

中的

val df = sqlContext.read
    .format("com.databricks.spark.csv")
    .option("header", "true") // Use first line of all files as header
    .schema(customSchema)
    .option("delimiter", "|")
    .load("file.csv")