新兴火花世界并尝试用我在网上找到的scala编写的数据集示例
在通过SBT运行时,我继续收到以下错误
org.apache.spark.sql.AnalysisException: Unable to generate an encoder for inner class
知道我在想什么
也可以随意指出编写相同数据集示例的更好方法
由于
> sbt> runMain DatasetExample
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/10/25 01:06:39 INFO Remoting: Starting remoting
16/10/25 01:06:46 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@192.168.150.130:50555]
[error] (run-main-6) org.apache.spark.sql.AnalysisException: Unable to generate an encoder for inner class `DatasetExample$Student` without access to the scope that this class was defined in. Try moving this class out of its parent class.;
org.apache.spark.sql.AnalysisException: Unable to generate an encoder for inner class `DatasetExample$Student` without access to the scope that this class was defined in. Try moving this class out of its parent class.;
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$$anonfun$3.applyOrElse(ExpressionEncoder.scala:306)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder$$anonfun$3.applyOrElse(ExpressionEncoder.scala:302)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:259)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:259)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:258)
at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:249)
at org.apache.spark.sql.catalyst.encoders.ExpressionEncoder.resolve(ExpressionEncoder.scala:302)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:79)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:90)
at org.apache.spark.sql.DataFrame.as(DataFrame.scala:209)
at DatasetExample$.main(DatasetExample.scala:45)
at DatasetExample.main(DatasetExample.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
[trace] Stack trace suppressed: run last sparkExamples/compile:runMain for the full output.
java.lang.RuntimeException: Nonzero exit code: 1
at scala.sys.package$.error(package.scala:27)
[trace] Stack trace suppressed: run last sparkExamples/compile:runMain for the full output.
[error] (sparkExamples/compile:runMain) Nonzero exit code: 1
[error] Total time: 127 s, completed Oct 25, 2016 1:08:09 AM
代码:
import org.apache.spark._
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql._
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.functions._
object DatasetExample {
// Create data sets
case class Student(name: String, dept: String, age:Long )
case class Department(abbrevName: String, fullName: String)
org.apache.spark.sql.catalyst.encoders.OuterScopes.addOuterScope(this) // Not sure what exactly is the purpose
def main(args: Array[String]) {
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)
// initialise spark context
val conf = new SparkConf().setAppName("SetsExamples").setMaster("local")
val sc = new SparkContext(conf)
val sqlcontext = new org.apache.spark.sql.SQLContext(sc)
import sqlcontext.implicits._ // Not sure what exactly is the purpose
// Read JSON objects into a Dataset[Student].
val students = sqlcontext.read.json("student.json").as[Student]
students.show()
// Select two columns and filter on one column.
// Each argument of "select" must be a "TypedColumn".
students.select($"name".as[String], $"dept".as[String]).
filter(_._2 == "Math"). // Filter on _2, the second selected column
collect()
// Group by department and count each group.
students.groupBy(_.dept).count().collect()
// Group and aggregate in each group.
students.groupBy(_.dept).
agg(avg($"age").as[Double]).
collect()
// Initialize a Seq and convert to a Dataset.
val depts = Seq(Department("CS", "Computer Science"), Department("Math", "Mathematics")).toDS()
// Show the contents of the Dataset.
depts.show()
// Join two datasets with "joinWith".
val joined = students.joinWith(depts, $"dept" === $"abbrevName")
// Show the contents of the joined Dataset.
// Note that the original objects are nested into tuples under the _1 and _2 columns.
joined.show()
// terminate spark context
sc.stop()
}
}
JSON文件(student.json):
{"id" : "1201", "name" : "Kris", "age" : "25"}
{"id" : "1202", "name" : "John", "age" : "28"}
{"id" : "1203", "name" : "Chet", "age" : "39"}
{"id" : "1204", "name" : "Mark", "age" : "23"}
{"id" : "1205", "name" : "Vic", "age" : "23"}
答案 0 :(得分:10)
此行是造成问题的原因:
org.apache.spark.sql.catalyst.encoders.OuterScopes.addOuterScope(this)
这意味着您要向此上下文添加新的外部作用域,可以在反序列化期间实例化inner class
时使用。
在Spark REPL中定义case类并注册定义此类的外部作用域允许我们在spark执行器上创建新实例时,会创建内部类。
在正常使用(您的情况)中,您不需要调用此函数。
编辑:您还需要将案例类移到DatasetExample
对象之外。
注意:
import sqlContext.implicits._
是一个特定于scala的调用,用于将常见的scala RDD对象转换为DataFrames的隐式方法。
有关here的更多信息。