我有一群人分别为会议提交了演示文稿。每个演示文稿需要由其他提交者进行7次审核,但没有提交者应该审核自己的演示文稿。我想随机指派每个人审核7个演示文稿,每个演示文稿仅被审核7次,没有人审核自己的演示文稿。
示例数据:
DT = data.frame(First_Name = letters[1:10], Presentation = 1:10)
我愿意在R或Excel中这样做。任何帮助表示赞赏。
答案 0 :(得分:1)
使用 Excel :
将该组的成员放在 A :
列中并运行此宏:
Sub Reviewers()
Dim N As Long, i As Long, j As Long, rA As Range
N = Cells(Rows.Count, "A").End(xlUp).Row
Set rA = Range("A1:A" & N)
'
'----------------------------------PART 1
'
For i = 1 To N
j = i + 1
rA.Copy Cells(1, j)
Cells(i, j).Delete shift:=xlUp
Next i
'
'---------------------------------PART 2
'
For i = 2 To N + 1
Call SkrambleRange(Range(Cells(1, i), Cells(N - 1, i)))
Next i
End Sub
Sub SkrambleRange(rng As Range)
Dim arr(), r As Range, i As Long
ReDim arr(1 To rng.Count)
i = 1
For Each r In rng
arr(i) = r.Value
i = i + 1
Next r
Call Shuffle(arr)
i = 1
For Each r In rng
r.Value = arr(i)
i = i + 1
Next r
End Sub
Public Sub Shuffle(InOut() As Variant)
Dim i As Long, j As Long
Dim tempF As Double, Temp As Variant
Hi = UBound(InOut)
Low = LBound(InOut)
ReDim Helper(Low To Hi) As Double
Randomize
For i = Low To Hi
Helper(i) = Rnd
Next i
j = (Hi - Low + 1) \ 2
Do While j > 0
For i = Low To Hi - j
If Helper(i) > Helper(i + j) Then
tempF = Helper(i)
Helper(i) = Helper(i + j)
Helper(i + j) = tempF
Temp = InOut(i)
InOut(i) = InOut(i + j)
InOut(i + j) = Temp
End If
Next i
For i = Hi - j To Low Step -1
If Helper(i) > Helper(i + j) Then
tempF = Helper(i)
Helper(i) = Helper(i + j)
Helper(i + j) = tempF
Temp = InOut(i)
InOut(i) = InOut(i + j)
InOut(i + j) = Temp
End If
Next i
j = j \ 2
Loop
End Sub
第1部分会为每个提交者生成审阅者列表。因此,列 B 是Mary Smith 的评论者列表(Mary Smith自己的名字已被删除);列 C 是Patricia Johnson等的审核人列表。
第2部分会对每个审核者列进行随机播放。:
要获得Mary Smith的7位评论者,请从 B 列中提取前7个名称。
为了获得Patricia Johnson的7位评论者,请从 C 等。
答案 1 :(得分:0)
R的igraph
库具有随机图生成算法。听起来你想要将每个人随机连接到另外7个人,比如一组10个人。这可以表示为具有10个顶点的图形,每个顶点具有7度。
这是库中的一种方法
library(igraph)
plot(g <- sample_degseq(rep(7,10),method="vl"))
答案 2 :(得分:0)
这是使用线性编程的解决方案。 (受Randomly assign elements repeatedly to a limited number of groups和https://acoppock.github.io/subpages/Random_Assignment_Subject_To_Constraints.html启发)
library(lpSolve)
library(tidyverse)
df <-
# get all possible person-presentation combinations
expand.grid(person = letters[1:10], presentation = 1:10) %>%
mutate(person_number = match(person, letters)) %>%
# throw out self-matches
filter(presentation != person_number)
# Two constraints:
# each presentation is reviewed 7 times.
# Each person conducts 7 reviews
first <- t(sapply(1:10, function(i) as.numeric(df$presentation == i)))
second <- t(sapply(letters[1:10], function(i) as.numeric(df$person == i)))
const.mat <- rbind(first, second)
const.dir <- rep(c("=", "="), c(10, 10))
const.rhs <- rep(c(7, 7), c(10, 10))
# This is the acutal stochastic part
random_objective <- runif(ncol(const.mat))
mod <- lp(
direction = "max",
objective.in = random_objective,
const.mat = const.mat,
const.dir = const.dir,
const.rhs = const.rhs,
all.bin = TRUE
)
df$assign_review <- mod$solution
with(df, table(assign_review))
with(df, table(assign_review, presentation))
with(df, table(assign_review, person))
这会产生所需的输出:
> with(df, table(assign_review, presentation))
presentation
assign_review 1 2 3 4 5 6 7 8 9 10
0 2 2 2 2 2 2 2 2 2 2
1 7 7 7 7 7 7 7 7 7 7
> with(df, table(assign_review, person))
person
assign_review a b c d e f g h i j
0 2 2 2 2 2 2 2 2 2 2
1 7 7 7 7 7 7 7 7 7 7