Python lambda:将函数赋给另一个函数

时间:2016-10-24 11:54:21

标签: python function lambda

我有两个功能,我想将它们结合起来: 第一个叫做f(rdata,t)的函数读入时间horizo​​nt的数据,并将其排列进行进一步的建模

def f(rdata,t):
    dataset = pd.read_csv(rdata, sep = ",", skiprows = 3)
    data = dataset.loc[:,dataset.dtypes == np.float64] 
    data = pd.concat([dataset.OS_TERM, data], axis = 1).set_index(dataset.SIMULATION)
    rdata = data.loc[data["OS_TERM"] == t ].drop("OS_TERM", axis = 1).T.add_prefix("Sim_")
    return(rdata)

第二个函数分位数(data,q,n,ascending)计算假设的分位数q并将其与第一个函数的结果进行比较,显示n个最极端的观察值

def quantile(data, q , n , ascending):
    name =  str(q)
    quant = pd.DataFrame({name:data.quantile(q, axis = 1)})
    quant_dif = pd.DataFrame(data.values - quant.values, columns = data.columns)**2
    cum_dif = pd.DataFrame(quant_dif.sum(axis = 0), columns = ["cum_dif"])
    out = pd.DataFrame(cum_dif.sort(["cum_dif"], ascending = ascending).ix[0:n,:])
    index = out.index.values
    sims = pd.DataFrame(data.loc[:, index])
    return(sims)

要结合这两个我可以建立以下功能

quantile(f(rdata), t), q, n, ascending)

尽管如此我想创建一个函数,它读入时间范围t的数据,然后在第二步中应用分位数

f(data, t, quantile(data, q, n, ascending))

有关如何设置此内容的任何建议,可能使用Lambda函数吗?

1 个答案:

答案 0 :(得分:0)

如果你坚持以最复杂的方式做事,你可以使用partial作为回调:

from functools import partial

def apply(rdata, t, callback):
    data = f(rdata, t)
    return callback(data=data)


apply(rdata, t, partial(qantile, q=q, n=n, ascending=ascending))

或使用lambda:

apply(
   rdata, t, 
   lambda data, q=q, n=n, asc=ascending: qantile(data, q, n, asc)
   )

但在这两种情况下,我都没有看到它是如何改进的,而不是简单明了的解决方案...