showDetails变量的范围是什么。它是否仅限于它自己的li或它会影响ul中的所有li。 有关完整代码,请参阅http://jsfiddle.net/asmKj/
unsigned char subset = (a & (1 << 0)) |
((a & (1 << 2)) >> 1) |
((a & (1 << 4)) >> 2) |
((a & (1 << 6)) >> 3);
答案 0 :(得分:1)
在ng-repeat的情况下,如果你创建或使用像 showDetails 字段那样的变量,它将为每个元素类型创建一个单独的cope,在这种情况下它将有一个对于每个$scope.showDetails
。
现在要对其进行测试,您可以创建一个与train_subset = 10000
num_labels = 5
data_size = 42
graph = tf.Graph()
with graph.as_default():
# Input data.
# Load the training, validation and test data into constants that are
# attached to the graph.
tf_train_dataset = tf.constant(train_set[:train_subset, :])
tf_train_labels = tf.constant(train_labels[:train_subset])
tf_valid_dataset = tf.constant(valid_set)
tf_test_dataset = tf.constant(test_set)
beta_regul = tf.placeholder(tf.float32)
# Variables.
# These are the parameters that we are going to be training. The weight
# matrix will be initialized using random values following a (truncated)
# normal distribution. The biases get initialized to zero.
weights = tf.Variable(
tf.truncated_normal([data_size, num_labels]))
biases = tf.Variable(tf.zeros([num_labels]))
# Training computation.
# We multiply the inputs with the weight matrix, and add biases. We compute
# the softmax and cross-entropy (it's one operation in TensorFlow, because
# it's very common, and it can be optimized). We take the average of this
# cross-entropy across all training examples: that's our loss.
logits = tf.matmul(tf_train_dataset, weights) + biases
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) + beta_regul * tf.nn.l2_loss(weights)
# Optimizer.
# We are going to find the minimum of this loss using gradient descent.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
# These are not part of training, but merely here so that we can report
# accuracy figures as we train.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(
tf.matmul(tf_valid_dataset, weights) + biases)
test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)
同名的范围变量,并将其默认设置为 true ,然后运行它。您将看到所有详细信息在加载时都可见,但是当您再次单击时,它只会影响依赖项。
首先,它将为每个li元素提供一个变量,并为其提供范围变量的值。
检查此fiddel Fiddel
答案 1 :(得分:0)
这意味着过程变量仅限于控制器示例,它只能在此控制器中访问。这提供了与控制器的同步链接以供查看。
答案 2 :(得分:0)
仅限于自己的李,它不会影响ul下的其他李。