星火记忆/工人问题&什么是正确的火花配置?

时间:2016-10-23 23:19:22

标签: apache-spark spark-streaming

我的spark群集中总共有6个节点。 5个节点分别有4个核心和32GB内存,其中一个节点(节点4)有8个内核和32GB内存。

所以我总共有6个节点--28个核心,192GB RAM。(我想使用一半的内存,但是所有内核)

计划在群集上运行5个spark应用程序。

我的spark_defaults.conf如下:

spark.master                     spark://***:7077
spark.eventLog.enabled           false
spark.driver.memory              2g
worker_max_heapsize              2g
spark.kryoserializer.buffer.max.mb      128
spark.shuffle.file.buffer.kb    1024
spark.cores.max                 4
spark.dynamicAllocation.enabled true

我想在每个节点上使用16GB max,并通过设置以下配置在每台机器上运行4个worker实例。所以,我期望(我的集群中有4个实例* 6个节点= 24个)工作人员。他们一起使用多达28个核心(全部)和96GB内存。

我的spark-env.sh如下。

export SPARK_WORKER_MEMORY=16g
export SPARK_WORKER_INSTANCES=4
SPARK_LOCAL_DIRS=/app/spark/spark-1.6.1-bin-hadoop2.6/local
SPARK_WORKER_DIR=/app/spark/spark-1.6.1-bin-hadoop2.6/work

但我的火花星团已经开始了

Spark UI正在显示正在运行的工作人员。

Worker Id ? Address State   Cores   Memory
worker-node4-address    ALIVE   8 (1 Used)  16.0 GB (0.0 GB Used)
worker-node4-address    ALIVE   8 (1 Used)  16.0 GB (0.0 GB Used)
worker-node4-address    ALIVE   8 (1 Used)  16.0 GB (0.0 GB Used)
worker-node4-address    ALIVE   8 (0 Used)  16.0 GB (0.0 B Used)
worker-node4-address    ALIVE   8 (1 Used)  16.0 GB (0.0 GB Used)
worker-node1-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node1-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node1-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node1-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)

worker-node2-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node2-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node2-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node2-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)

worker-node3-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node3-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node3-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node3-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)

worker-node5-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node5-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node5-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node5-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)

worker-node6-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node6-address    ALIVE   4 (3 Used)  16.0 GB (0.0 GB Used)
worker-node6-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)
worker-node6-address    ALIVE   4 (0 Used)  16.0 GB (0.0 B Used)

但主UI正在显示(当没有应用程序运行时) 活着的工人:25 使用的核心数:120总计,0使用 使用的内存:总计400.0 GB,使用0 GB 状态:ALIVE

当我期待24名工人(每个节点4个)时,为什么有25个? - 在node4上有1个额外的,它有8个核心。

当我在每个节点上分配最大16GB时,为什么显示正在使用的内存:总共400.0 GB?

UI数据显示我有120个核心,因为我的群集中有28个核心?

你能告诉我我的系统应该有什么样的火花配置吗?

我提交spark作业时应指定多少个核心执行程序内存?

什么是spark.cores.max参数?是每个节点还是整个集群?

我用spart-submit配置运行了3个应用程序--executor-memory 2G --total-executor-cores 4 至少我的一个应用程序给出了以下错误并失败。

Exception in thread "main" java.lang.OutOfMemoryError: unable to create new native thread
        at java.lang.Thread.start0(Native Method)
        at java.lang.Thread.start(Thread.java:714)
        at scala.concurrent.forkjoin.ForkJoinPool.tryAddWorker(ForkJoinPool.java:1672)
        at scala.concurrent.forkjoin.ForkJoinPool.signalWork(ForkJoinPool.java:1966)
        at scala.concurrent.forkjoin.ForkJoinPool.fullExternalPush(ForkJoinPool.java:1905)
        at scala.concurrent.forkjoin.ForkJoinPool.externalPush(ForkJoinPool.java:1834)
        at scala.concurrent.forkjoin.ForkJoinPool.execute(ForkJoinPool.java:2955)
        at scala.concurrent.impl.ExecutionContextImpl.execute(ExecutionContextImpl.scala:120)
        at scala.concurrent.impl.Future$.apply(Future.scala:31)
        at scala.concurrent.Future$.apply(Future.scala:485)
        at org.apache.spark.deploy.rest.RestSubmissionClient.readResponse(RestSubmissionClient.scala:232)
        at org.apache.spark.deploy.rest.RestSubmissionClient.org$apache$spark$deploy$rest$RestSubmissionClient$$postJson(RestSubmissionClient.scala:222)
        at org.apache.spark.deploy.rest.RestSubmissionClient$$anonfun$createSubmission$3.apply(RestSubmissionClient.scala:87)
        at org.apache.spark.deploy.rest.RestSubmissionClient$$anonfun$createSubmission$3.apply(RestSubmissionClient.scala:83)
        at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:772)
        at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
        at scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)
        at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:771)
        at org.apache.spark.deploy.rest.RestSubmissionClient.createSubmission(RestSubmissionClient.scala:83)
        at org.apache.spark.deploy.rest.RestSubmissionClient$.run(RestSubmissionClient.scala:411)
        at org.apache.spark.deploy.rest.RestSubmissionClient$.main(RestSubmissionClient.scala:424)
        at org.apache.spark.deploy.rest.RestSubmissionClient.main(RestSubmissionClient.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:497)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:195)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

1 个答案:

答案 0 :(得分:1)

据我所知,每个节点只能启动一个Worker:

http://spark.apache.org/docs/latest/hardware-provisioning.html

仅当每个节点有超过200 GB-Ram时。但是每个节点没有200 GB-Ram。你可以在只有4个核心的节点的spark-env.sh中设置它吗?

export SPARK_EXECUTOR_CORES=4
export SPARK_EXECUTOR_MEMORY=16GB
export SPARK_MASTER_HOST=<Your Master-Ip here>

在具有8个核心的节点处:

export SPARK_EXECUTOR_CORES=8
export SPARK_EXECUTOR_MEMORY=16GB
export SPARK_MASTER_HOST=<Your Master-Ip here>

这是在spark-defaults.conf中的主节点:

spark.driver.memory              2g

我认为你应该尝试这个并注释掉其他的Konfigurations进行测试。这就是你想要的吗?您的群集现在应该总共使用96 GB和28个核心。您可以在没有--executor-memory 2G --total-executor-cores 4的情况下启动您的应用程序。但java.lang.OutOfMemoryError可以在没有错误配置的情况下发生。当你向司机收集太多费用时也会发生这种情况。

是的,每个工作人员在当前配置中都有16 GB Ram。然后25工人* 16 GB =总共400 GB。