假设我有一个具有以下结构的数据框:
observation
d1 1
d2 1
d3 -1
d4 -1
d5 -1
d6 -1
d7 1
d8 1
d9 1
d10 1
d11 -1
d12 -1
d13 -1
d14 -1
d15 -1
d16 1
d17 1
d18 1
d19 1
d20 1
其中d1:d20是某个日期时间索引(在此处概括)。
如果我想将d1:d2,d3:d6,d7:d10等分成他们各自的" chunks",我将如何蟒蛇化?
注意:
df1 = df[(df.observation==1)]
df2 = df[(df.observation==-1)]
不是我想要的。
我可以想到蛮力的方式,哪种方法有效,但不是很优雅。
答案 0 :(得分:6)
您可以根据cumsum()
列diff()
的{{1}}创建一个组变量,如果diff()不等于零,则分配一个True值,因此每次出现新值时,系统都会使用observation
创建新的组ID,然后您可以在cumsum()
之后使用groupby()
应用标准分析,或者将其拆分为较小的数据框df.groupby((df.observation.diff() != 0).cumsum())...(other chained analysis here)
:
list-comprehension
这里的索引块:
lst = [g for _, g in df.groupby((df.observation.diff() != 0).cumsum())]
lst[0]
# observation
#d1 1
#d2 1
lst[1]
# observation
#d3 -1
#d4 -1
#d5 -1
#d6 -1
...
答案 1 :(得分:0)
以下是使用真实date.datetime
个对象作为索引的示例。
import pandas as pd
import numpy as np
import datetime
import random
df = pd.DataFrame({'x': np.random.randn(40)}, index = [date.fromordinal(random.randint(start_date, end_date)) for i in range(40)])
def filter_on_datetime(df, year = None, month = None, day = None):
if all(d is not None for d in {year, month, day}):
idxs = [idx for idx in df.index if idx.year == year and idx.month == month and idx.day == day]
elif year is not None and month is not None and day is None:
idxs = [idx for idx in df.index if idx.year == year and idx.month == month]
elif year is not None and month is None and day is None:
idxs = [idx for idx in df.index if idx.year == year]
elif year is None and month is not None and day is not None:
idxs = [idx for idx in df.index if idx.month == month and idx.day == day]
elif year is None and month is None and day is not None:
idxs = [idx for idx in df.index if idx.day == day]
elif year is None and month is not None and day is None:
idxs = [idx for idx in df.index if idx.month == month]
elif year is not None and month is None and day is not None:
idxs = [idx for idx in df.index if idx.year == year and idx.day == day]
else:
idxs = df.index
return df.ix[idxs]
运行此:
>>> print(filter_on_datetime(df = df, year = 2016, month = 2))
x
2016-02-01 -0.141557
2016-02-03 0.162429
2016-02-05 0.703794
2016-02-07 -0.184492
2016-02-09 -0.921793
2016-02-12 1.593838
2016-02-17 2.784899
2016-02-19 0.034721
2016-02-26 -0.142299