获得了一个名为data的pd数据库:
transaction_id house_id date_sale sale_price boolean_2015
0 1 1 31 Mar 2016 £880,000 True
3 4 2 31 Mar 2016 £450,000 True
4 5 3 31 Mar 2016 £680,000 True
6 7 4 31 Mar 2016 £1,850,000 True
7 8 5 31 Mar 2016 £420,000 True
另一个叫房子:
id address postcode postcode first
0 1 Flat 78, Andrewes House, Barbican, London, Gre... EC2Y 8AY EC2Y
1 2 Flat 35, John Trundle Court, Barbican, London,... EC2Y 8DJ EC2Y
问题是我如何在名为'postcode_first'的数据中添加一列,我在其中查找数据['house_id']并将邮政编码的第一部分添加到数据['postcode_first']中的每一行?
我得到的最接近的是
data['postcode'] = np.where(houses['id'] == data['house_id'])
但这根本没有意义
任何帮助人?
编辑
也试过了
data['postcode'] = houses.loc[houses['id'] == data['house_id']]['postcode_first']
但是这返回了
Traceback (most recent call last):
File "/Users/saminahbab/Documents/House_Prices/final project/sql_functions.py", line 30, in <module>
data['postcode'] = houses.loc[houses['id'] == data['house_id']]['postcode_first']
File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/pandas/core/ops.py", line 735, in wrapper
raise ValueError('Series lengths must match to compare')
ValueError: Series lengths must match to compare
这不重要,因为我试图基本上说data['postcode'] equals houses['postcode_first'] WHERE houses['id'] equals data['house_id']
答案 0 :(得分:1)
您可以使用map()方法:
In [108]: df['postcode'] = df.house_id.map(h.set_index('id')['postcode first'])
In [109]: df
Out[109]:
transaction_id house_id date_sale sale_price boolean_2015 postcode
0 1 1 31 Mar 2016 £880,000 True EC2Y
3 4 2 31 Mar 2016 £450,000 True EC2Y
4 5 3 31 Mar 2016 £680,000 True NaN
6 7 4 31 Mar 2016 £1,850,000 True NaN
7 8 5 31 Mar 2016 £420,000 True NaN
数据:
In [110]: h
Out[110]:
id address postcode postcode first
0 1 Flat 78, Andrewes House, Barbican, London, Gre EC2Y 8AY EC2Y
1 2 Flat 35, John Trundle Court, Barbican, London EC2Y 8DJ EC2Y
In [113]: df
Out[113]:
transaction_id house_id date_sale sale_price boolean_2015
0 1 1 31 Mar 2016 £880,000 True
3 4 2 31 Mar 2016 £450,000 True
4 5 3 31 Mar 2016 £680,000 True
6 7 4 31 Mar 2016 £1,850,000 True
7 8 5 31 Mar 2016 £420,000 True