我正在从UniversitéParisDiderot提供的MOOC学习OCaml。目前我还没有遇到过与功能性思维的重大斗争,但我确实发现这段代码,有点难看。我如何重构它,所以我可以编写e1的一般评估,e2用于简化函数中包含的匹配语句的两个最新分支。这个函数的想法是将e * 0或0 * e转换为0; e * 1或1 * e进入e;和e + 0或0 + e到e。
type exp =
| EInt of int
| EAdd of exp * exp
| EMul of exp * exp;;
let eval expression =
let rec aux = function
| EInt x -> x
| EAdd (e1, e2) -> (aux e1) + (aux e2)
| EMul (e1, e2) -> (aux e1) * (aux e2)
in aux expression;;
let simplify expression =
match expression with
| EInt _ -> expression
| EAdd (e1, e2) ->
let v1 = eval e1 in
let v2 = eval e2 in
if v1 = 0 then e2
else if v2 = 0 then e1
else expression
| EMul (e1, e2) ->
let v1 = eval e1 in
let v2 = eval e2 in
if v1 = 0 || v2 = 0 then EInt 0
else if v1 = 1 then e2
else if v2 = 1 then e1
else expression;;
感谢您的帮助! 谢谢!
答案 0 :(得分:1)
我想你可以有这样的功能:
let simplifyop identity zero exp e1 e2 =
let v1 = eval e1 in
let v2 = eval e2 in
if v1 = identity then e2
else if v2 = identity then e1
else
match zero with
| None -> exp
| Some z ->
if v1 = z || v2 = z then EInt z
else exp
然后您的案例如下:
| EAdd (e1, e2) -> simplifyop 0 None expression e1 e2
| EMul (e1, e2) -> simplifyop 1 (Some 0) expression e1 e2