我正在开展一个项目,该项目将国家气象服务ftp站点的原始二进制雷达数据导入服务器。使用Weather and Climate Toolkit数据导出工具,我将数据转换为netCDF文件。以下是.nc文件中“ncdump -h”命令的结果:
netcdf last {
dimensions:
lat = 800 ;
lon = 1200 ;
time = 1 ;
variables:
double cref(time, lat, lon) ;
cref:long_name = "Level-III Composite Reflectivity (16 levels / 248 nm)" ;
cref:missing_value = -999. ;
cref:units = "dBZ" ;
double lat(lat) ;
lat:units = "degrees_north" ;
lat:spacing = "0.010995604400775773" ;
lat:datum = "NAD83 - NOAA Standard" ;
double lon(lon) ;
lon:units = "degrees_east" ;
lon:spacing = "0.010983926942902655" ;
lon:datum = "NAD83 - NOAA Standard" ;
int time(time) ;
time:units = "seconds since 1970-1-1" ;
// global attributes:
:title = "Level-III Composite Reflectivity (16 levels / 248 nm) 22:23:47 UTC 10/20/2016" ;
:Conventions = "CF-1.0" ;
:History = "Exported to NetCDF-3 CF-1.0 conventions by the NOAA Weather and Climate Toolkit (version 3.7.9) \n",
"Export Date: Thu Oct 20 16:11:07 EDT 2016" ;
:geographic_datum_ESRI_PRJ = "GEOGCS[\"GCS_North_American_1983\",DATUM[\"D_North_American_1983\",SPHEROID[\"GRS_1980\",6378137,298.257222101]],PRIMEM[\"Greenwich\",0],UNIT[\"Degree\",0.0174532925199433]]" ;
:geographic_datum_OGC_WKT = "GEOGCS[\"NAD83\", DATUM[\"NAD83\", SPHEROID[\"GRS_1980\", 6378137.0, 298.25722210100002],TOWGS84[0,0,0,0,0,0,0]], PRIMEM[\"Greenwich\", 0.0], UNIT[\"degree\",0.017453292519943295], AXIS[\"Longitude\",EAST], AXIS[\"Latitude\",NORTH]]" ;
}
我想找到cref变量的最大条目,我可以用python中的netCDF4和numpy库很容易地做到这一点:
import netCDF4
import numpy
netcdf = netCDF4.Dataset("last.nc")
var = netcdf.variables['cref']
print(numpy.nanmax(var))
print(numpy.nanmin(var))
但是,我希望过滤netCDF文件,以便仅在给定纬度/经度的某个距离内找到最大值和最小值。换句话说,我希望在指定的纬度/经度周围“裁剪”指定半径的圆。我通过另一个SO线程找到了how to crop a square,但无法弄清楚圆圈是如何工作的。
答案 0 :(得分:4)
我将计算中心与每个纬度/经度对(2D网格)之间的距离,并使用它来构建可应用于数据的蒙版。屏蔽后,您可以再次使用numpy
函数计算max()
等统计信息。
例如,使用https://stackoverflow.com/a/4913653/3581217中的haversine()
函数,修改为可直接应用于numpy
数组的矢量化版本:
import numpy as np
import matplotlib.pylab as pl
def haversine(lon1, lat1, lon2, lat2):
# convert decimal degrees to radians
lon1 = np.deg2rad(lon1)
lon2 = np.deg2rad(lon2)
lat1 = np.deg2rad(lat1)
lat2 = np.deg2rad(lat2)
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2)**2
c = 2 * np.arcsin(np.sqrt(a))
r = 6371
return c * r
# Latitude / longitude grid
lat = np.linspace(50,54,16)
lon = np.linspace(6,9,12)
# Center coordinates
clat = 52
clon = 7
max_dist = 100 # max distance in km
# Calculate distance between center and all other lat/lon pairs
distance = haversine(lon[:,np.newaxis], lat, clon, clat)
# Mask distance array where distance > max_dist
distance_m = np.ma.masked_greater(distance, max_dist)
# Dummy data
data = np.random.random(size=[lon.size, lat.size])
# Test: set a value outside the max_dist circle to a large value:
data[0,0] = 10
# Mask the data array based on the distance mask
data_m = np.ma.masked_where(distance > max_dist, data)
pl.figure()
pl.subplot(221)
pl.title('distance (km)')
pl.pcolormesh(lon, lat, np.transpose(distance))
pl.colorbar()
pl.subplot(222)
pl.title('distance < max_dist (km)')
pl.pcolormesh(lon, lat, np.transpose(distance_m))
pl.colorbar()
pl.subplot(223)
pl.title('all data; max = {0:.1f}'.format(data.max()))
pl.pcolormesh(lon, lat, np.transpose(data))
pl.colorbar()
pl.subplot(224)
pl.title('masked data; max = {0:.1f}'.format(data_m.max()))
pl.pcolormesh(lon, lat, np.transpose(data_m))
pl.colorbar()
结果是: