我有以下代码在theano中进行逻辑回归,但我不断收到尺寸不匹配错误:
inputs = [[0,0], [1,1], [0,1], [1,0]]
outputs = [0, 1, 0, 0]
x = T.dmatrix("x")
y = T.dvector("y")
b = theano.shared(value=1.0, name='b')
alpha = 0.01
training_steps = 30000
w_values = np.asarray(np.random.uniform(low=-1, high=1, size=(2, 1)), dtype=theano.config.floatX)
w = theano.shared(value=w_values, name='w', borrow=True)
hypothesis = T.nnet.sigmoid(T.dot(x, w) + b)
cost = T.sum((y - hypothesis) ** 2)
updates = [
(w, w - alpha * T.grad(cost, wrt=w)),
(b, b - alpha * T.grad(cost, wrt=b))
]
train = theano.function(inputs=[x, y], outputs=[hypothesis, cost], updates=updates)
test = theano.function(inputs=[x], outputs=[hypothesis])
# Training
cost_history = []
for i in range(training_steps):
if (i+1) % 5000 == 0:
print "Iteration #%s: " % str(i+1)
print "Cost: %s" % str(cost)
h, cost = train(inputs, outputs)
cost_history.append(cost)
theano给出的错误是:
Input dimension mis-match. (input[0].shape[1] = 4, input[1].shape[1] = 1)
Apply node that caused the error: Elemwise{sub,no_inplace}(InplaceDimShuffle{x,0}.0, Elemwise{Composite{scalar_sigmoid((i0 + i1))}}[(0, 0)].0)
Toposort index: 7
Inputs types: [TensorType(float64, row), TensorType(float64, matrix)]
Inputs shapes: [(1L, 4L), (4L, 1L)]
Inputs strides: [(32L, 8L), (8L, 8L)]
Inputs values: [array([[ 0., 1., 0., 0.]]), array([[ 0.73105858],
[ 0.70988924],
[ 0.68095791],
[ 0.75706749]])]
所以问题似乎是,y被视为1x4,而假设值是4x1,因此无法计算成本
我尝试使用以下内容将输入重新整形为4x1:
outputs = np.array([0, 1, 0, 0]).reshape(4,1)
然后给了我另一个与维度相关的错误:
('Bad input argument to theano function with name "F:/test.py:32" at index 1(0-based)', 'Wrong number of dimensions: expected 1, got 2 with shape (4L, 1L).')
答案 0 :(得分:1)
因为在您的代码中,git rm --cached -r node_modules
是一个形状为n_sample * 1的矩阵。另一方面,hypothesis
是一个向量。发生维度不匹配。
您可以展平y
或重塑hypothesis
。
以下代码有效。
y