考虑pd.Series
s
s = pd.Series(list('abcdefghij'), list('ABCDEFGHIJ'))
s
A a
B b
C c
D d
E e
F f
G g
H h
I i
J j
dtype: object
交换索引和值以及获取以下内容的最快捷方式是什么
a A
b B
c C
d D
e E
f F
g G
h H
i I
j J
dtype: object
答案 0 :(得分:17)
一个可行的解决方案是交换键和值:
s1 = pd.Series(dict((v,k) for k,v in s.iteritems()))
print (s1)
a A
b B
c C
d D
e E
f F
g G
h H
i I
j J
dtype: object
另一个最快的:
print (pd.Series(s.index.values, index=s ))
a A
b B
c C
d D
e E
f F
g G
h H
i I
j J
dtype: object
<强>计时强>:
In [63]: %timeit pd.Series(dict((v,k) for k,v in s.iteritems()))
The slowest run took 6.55 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 146 µs per loop
In [71]: %timeit (pd.Series(s.index.values, index=s ))
The slowest run took 7.42 times longer than the fastest. This could mean that an intermediate result is being cached.
10000 loops, best of 3: 102 µs per loop
如果Series
的长度为1M
:
s = pd.Series(list('abcdefghij'), list('ABCDEFGHIJ'))
s = pd.concat([s]*1000000).reset_index(drop=True)
print (s)
In [72]: %timeit (pd.Series(s.index, index=s ))
10000 loops, best of 3: 106 µs per loop
In [229]: %timeit pd.Series(dict((v,k) for k,v in s.iteritems()))
1 loop, best of 3: 1.77 s per loop
In [230]: %timeit (pd.Series(s.index, index=s ))
10 loops, best of 3: 130 ms per loop
In [231]: %timeit (pd.Series(s.index.values, index=s ))
10 loops, best of 3: 26.5 ms per loop
答案 1 :(得分:0)
a2b = my_df
b2a = pd.Series(data = a2b.index, index = a2b.values)