我想我现在正在失去理智。
我正在使用Lasagne进行小型卷积神经网络。它训练完美,我也可以计算训练和验证集的错误,但我无法将训练好的模型保存在磁盘上。更好,我可以保存并加载它,但我不能用它来预测新数据。
这是我在训练后所做的事情
model = {'network': network, 'params': get_all_params(network), 'params_values': get_all_param_values(network)}
pickle.dump(model, open('models/model_1.pkl', 'wb'), protocol=pickle.HIGHEST_PROTOCOL)
这就是我加载模型的方法
with open('models/model.pkl', 'rb') as pickle_file:
model = pickle.load(pickle_file)
network = model['network']
values = model['params_values']
set_all_param_values(network, values)
T_input = T.tensor4('input', dtype='float32')
T_target = T.ivector('target')
predictions = get_output(network, deterministic=True)
loss = (cross_entropy(predictions, T_target)).mean()
acc = T.mean(T.eq(T.argmax(predictions, axis=1), T_target), dtype=config.floatX)
test_fn = function([T_input, T_target], [loss, acc])
我甚至无法传递真正的numpy输入,我得到了这个错误
theano.compile.function_module.UnusedInputError: theano.function was asked to create a
function computing outputs given certain inputs, but the provided input variable at index 0
is not part of the computational graph needed to compute the outputs: input.
To make this error into a warning, you can pass the parameter
on_unused_input='warn' to theano.function. To disable it completely, use
on_unused_input='ignore'.
我试着设置参数on_unused_input ='warn'然后,这就是结果
theano.gof.fg.MissingInputError: An input of the graph, used to compute (..)
was not provided and not given a value.Use the Theano flag
exception_verbosity='high',for more information on this error.
答案 0 :(得分:0)
问题是你的T_input没有绑定到输入层,因此theano无法编译它
T_input = lasagne.layers.get_all_layers(network)[0].input_var