我有以下DataFrame:
import pandas as pd
import numpy as np
dates = pd.date_range('20130101',periods=6)
df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))
是:
out[]:df
A B C D
2013-01-01 0.849638 0.163683 -0.422279 -0.981363
2013-01-02 -0.828562 -0.726762 -0.154431 1.695164
2013-01-03 1.668989 1.057559 -0.958682 -1.443136
2013-01-04 -3.386432 0.115499 -2.095343 -1.887334
2013-01-05 1.595712 0.270327 -0.532860 -0.690501
2013-01-06 -1.734169 0.574431 -0.982097 1.092113
我有目的地堆叠数据框,如下所示:
2013-01-01 A 0.849638
B 0.163683
C -0.422279
D -0.981363
2013-01-02 A -0.828562
B -0.726762
C -0.154431
D 1.695164
2013-01-03 A 1.668989
B 1.057559
C -0.958682
D -1.443136
2013-01-04 A -3.386432
B 0.115499
C -2.095343
D -1.887334
2013-01-05 A 1.595712
B 0.270327
C -0.532860
D -0.690501
2013-01-06 A -1.734169
B 0.574431
C -0.982097
D 1.092113
dtype: float64
我希望在所有行中打印日期而不是合并在一起。我想要这样的东西:
2013-01-01 A 0.849638
2013-01-01 B 0.163683
2013-01-01 C -0.422279
2013-01-01 D -0.981363
.......
.......
2013-01-06 A -1.734169
2013-01-06 B 0.574431
2013-01-06 C -0.982097
2013-01-06 D 1.092113
dtype: float64
任何人都可以帮助我实现这一目标。谢谢。
答案 0 :(得分:2)
相关的pandas选项为'display.multi_sparse'
你可以自己设置
pd.set_option('display.multi_sparse', False)
或使用pd.option_context
暂时将其设置为with
块
with pd.option_context('display.multi_sparse', False):
dates = pd.date_range('20130101',periods=6)
print(pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD')).stack())
2013-01-01 A 0.074056
2013-01-01 B 0.565971
2013-01-01 C 0.312375
2013-01-01 D 0.000926
2013-01-02 A 0.669702
2013-01-02 B 0.458241
2013-01-02 C 0.854965
2013-01-02 D 1.608542
2013-01-03 A 0.358990
2013-01-03 B 0.194446
2013-01-03 C -0.988489
2013-01-03 D -0.967467
2013-01-04 A -0.768605
2013-01-04 B 0.791746
2013-01-04 C 0.073552
2013-01-04 D -0.604505
2013-01-05 A 0.254031
2013-01-05 B 0.143891
2013-01-05 C -0.351159
2013-01-05 D 0.642623
2013-01-06 A 0.499416
2013-01-06 B -0.588694
2013-01-06 C 1.418078
2013-01-06 D -0.071737
dtype: float64