我必须遵循以下问题:
template< size_t... N_i >
class A
{
// ...
};
template< size_t N, size_t... N_i >
A</* first N elements of N_i...*/> foo()
{
A</* first N elements of N_i...*/> a;
// ...
return a;
}
int main()
{
A<1,2> res = foo<2, 1,2,3,4>();
return 0;
}
在这里,我希望foo
具有返回类型A</* first N size_t of N_i...*/>
,即class A
,其具有参数包N_i
的前N个元素作为模板参数。
有谁知道如何实施?
答案 0 :(得分:15)
这是我想到的最简短的解决方案(两行用于别名) 它遵循一个基于OP发布的代码的最小工作示例:
#include<functional>
#include<cstddef>
#include<utility>
#include<tuple>
template<std::size_t... V>
class A {};
template<std::size_t... V, std::size_t... I>
constexpr auto func(std::index_sequence<I...>) {
return A<std::get<I>(std::make_tuple(V...))...>{};
}
template<std::size_t N, std::size_t... V>
constexpr auto func() {
return func<V...>(std::make_index_sequence<N>{});
}
template<std::size_t N, std::size_t... V>
using my_a = decltype(func<N, V...>());
int main() {
A<1,2> res1 = func<2, 1, 2, 3, 4>();
// Or even better...
decltype(func<2, 1, 2, 3, 4>()) res2{};
// Or even better...
my_a<2, 1, 2, 3, 4> res3{};
}
答案 1 :(得分:8)
最直接的子问题是在列表领域:
template <class... Ts>
struct typelist {
using type = typelist;
static constexpr std::size_t size = sizeof...(Ts);
};
template <class T>
struct tag { using type = T; };
template <std::size_t N, class TL>
struct head_n {
using type = ???;
};
现在,head_n
只是简单递归的问题 - 从空列表开始,将一个元素从一个列表移动到另一个列表N
次。
template <std::size_t N, class R, class TL>
struct head_n_impl;
// have at least one to pop from and need at least one more, so just
// move it over
template <std::size_t N, class... Ts, class U, class... Us>
struct head_n_impl<N, typelist<Ts...>, typelist<U, Us...>>
: head_n_impl<N-1, typelist<Ts..., U>, typelist<Us...>>
{ };
// we have two base cases for 0 because we need to be more specialized
// than the previous case regardless of if we have any elements in the list
// left or not
template <class... Ts, class... Us>
struct head_n_impl<0, typelist<Ts...>, typelist<Us...>>
: tag<typelist<Ts...>>
{ };
template <class... Ts, class U, class... Us>
struct head_n_impl<0, typelist<Ts...>, typelist<U, Us...>>
: tag<typelist<Ts...>>
{ };
template <std::size_t N, class TL>
using head_n = typename head_n_impl<N, typelist<>, TL>::type;
从这个到你的具体问题,我把这作为练习留给读者。
另一种方法是通过连接。将typelist<Ts...>
的每个元素转换为typelist<T>
或typelist<>
,然后将它们连接在一起。 concat
很简单:
template <class... Ts>
struct concat { };
template <class TL>
struct concat<TL>
: tag<TL>
{ };
template <class... As, class... Bs, class... Rest>
struct concat<typelist<As...>, typelist<Bs...>, Rest...>
: concat<typelist<As..., Bs...>, Rest...>
{ };
然后我们可以做到:
template <std::size_t N, class TL, class = std::make_index_sequence<TL::size>>
struct head_n;
template <std::size_t N, class... Ts, std::size_t... Is>
struct head_n<N, typelist<Ts...>, std::index_sequence<Is...>>
: concat<
std::conditional_t<(Is < N), typelist<Ts>, typelist<>>...
>
{ };
template <std::size_t N, class TL>
using head_n_t = typename head_n<N, TL>::type;
后一种方法的优点是concat
可以在给定适当operator+
的折叠表达式中在C ++ 17中替换:
template <class... As, class... Bs>
constexpr typelist<As..., Bs...> operator+(typelist<As...>, typelist<Bs...> ) {
return {};
}
允许:
template <std::size_t N, class... Ts, std::size_t... Is>
struct head_n<N, typelist<Ts...>, std::index_sequence<Is...>>
{
using type = decltype(
(std::conditional_t<(Is < N), typelist<Ts>, typelist<>>{} + ... + typelist<>{})
);
};
答案 2 :(得分:7)
这是@skypjack's answer的一个小变化,可以避免使用元组:
template <size_t... N_i,size_t... M_i>
auto foo2(std::index_sequence<M_i...>)
{
constexpr size_t values[] = {N_i...};
return A<values[M_i]...>();
}
template <size_t N,size_t... N_i>
auto foo()
{
return foo2<N_i...>(std::make_index_sequence<N>());
}
答案 3 :(得分:4)
namespace hana = boost::hana;
template<size_t... vals>
auto make_a(hana::tuple<hana::integral_constant<size_t, vals>...>)
{
return A<vals...>{};
}
template<size_t N, size_t... vals>
auto foo(){
constexpr auto front = hana::take_front(
hana::tuple_c<size_t, vals...>,
hana::integral_c<size_t,N>
);
return detail::make_a(front);
}
答案 4 :(得分:3)
您还可以使用variadic通用lambda表达式和可重用的辅助结构来执行编译时迭代:
#include <utility>
#include <tuple>
template <std::size_t N, class = std::make_index_sequence<N>>
struct iterate;
template <std::size_t N, std::size_t... Is>
struct iterate<N, std::index_sequence<Is...>> {
template <class Lambda>
auto operator()(Lambda lambda) {
return lambda(std::integral_constant<std::size_t, Is>{}...);
}
};
template <size_t... Is>
struct A { };
template <size_t N, size_t... Is>
auto foo() {
return iterate<N>{}([](auto... ps){
using type = std::tuple<std::integral_constant<std::size_t, Is>...>;
return A<std::tuple_element_t<ps, type>{}...>{};
});
}
int main() {
decltype(foo<3, 1, 2, 3, 4>()) a; // == A<1, 2, 3> a;
}
答案 5 :(得分:2)
不幸的是,这种方法需要定义其他Helper类型
template< size_t... N_i >
class A
{
};
template <size_t... N_i>
struct Helper;
template <size_t... N_i>
struct Helper<0, N_i...>
{
typedef A<> type;
};
template <size_t N0, size_t... N_i>
struct Helper<1, N0, N_i...>
{
typedef A<N0> type;
};
template <size_t N0, size_t N1, size_t... N_i>
struct Helper<2, N0, N1, N_i...>
{
typedef A<N0, N1> type;
};
template< size_t N, size_t... N_i >
typename Helper<N, N_i...>::type foo()
{
typename Helper<N, N_i...>::type a;
return a;
}