我想知道是否有一个Parallel.For等同于.net版本的Java?
如果有人可以提供一个例子吗?谢谢!
答案 0 :(得分:106)
我猜最接近的是:
ExecutorService exec = Executors.newFixedThreadPool(SOME_NUM_OF_THREADS);
try {
for (final Object o : list) {
exec.submit(new Runnable() {
@Override
public void run() {
// do stuff with o.
}
});
}
} finally {
exec.shutdown();
}
根据TheLQ的评论,您可以将SUM_NUM_THREADS设置为Runtime.getRuntime().availableProcessors();
编辑:决定添加一个基本的“Parallel.For”实现
public class Parallel {
private static final int NUM_CORES = Runtime.getRuntime().availableProcessors();
private static final ExecutorService forPool = Executors.newFixedThreadPool(NUM_CORES * 2, new NamedThreadFactory("Parallel.For"));
public static <T> void For(final Iterable<T> elements, final Operation<T> operation) {
try {
// invokeAll blocks for us until all submitted tasks in the call complete
forPool.invokeAll(createCallables(elements, operation));
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public static <T> Collection<Callable<Void>> createCallables(final Iterable<T> elements, final Operation<T> operation) {
List<Callable<Void>> callables = new LinkedList<Callable<Void>>();
for (final T elem : elements) {
callables.add(new Callable<Void>() {
@Override
public Void call() {
operation.perform(elem);
return null;
}
});
}
return callables;
}
public static interface Operation<T> {
public void perform(T pParameter);
}
}
Parallel.For的使用示例
// Collection of items to process in parallel
Collection<Integer> elems = new LinkedList<Integer>();
for (int i = 0; i < 40; ++i) {
elems.add(i);
}
Parallel.For(elems,
// The operation to perform with each item
new Parallel.Operation<Integer>() {
public void perform(Integer param) {
System.out.println(param);
};
});
我想这个实现与Parallel.ForEach
更相似修改强> 如果有人有兴趣我把它放在GitHub上。 Parallel For on GitHub
答案 1 :(得分:10)
MLaw的解决方案是一个非常实用的Parallel.ForEach。我添加了一些修改来制作Parallel.For。
public class Parallel
{
static final int iCPU = Runtime.getRuntime().availableProcessors();
public static <T> void ForEach(Iterable <T> parameters,
final LoopBody<T> loopBody)
{
ExecutorService executor = Executors.newFixedThreadPool(iCPU);
List<Future<?>> futures = new LinkedList<Future<?>>();
for (final T param : parameters)
{
Future<?> future = executor.submit(new Runnable()
{
public void run() { loopBody.run(param); }
});
futures.add(future);
}
for (Future<?> f : futures)
{
try { f.get(); }
catch (InterruptedException e) { }
catch (ExecutionException e) { }
}
executor.shutdown();
}
public static void For(int start,
int stop,
final LoopBody<Integer> loopBody)
{
ExecutorService executor = Executors.newFixedThreadPool(iCPU);
List<Future<?>> futures = new LinkedList<Future<?>>();
for (int i=start; i<stop; i++)
{
final Integer k = i;
Future<?> future = executor.submit(new Runnable()
{
public void run() { loopBody.run(k); }
});
futures.add(future);
}
for (Future<?> f : futures)
{
try { f.get(); }
catch (InterruptedException e) { }
catch (ExecutionException e) { }
}
executor.shutdown();
}
}
public interface LoopBody <T>
{
void run(T i);
}
public class ParallelTest
{
int k;
public ParallelTest()
{
k = 0;
Parallel.For(0, 10, new LoopBody <Integer>()
{
public void run(Integer i)
{
k += i;
System.out.println(i);
}
});
System.out.println("Sum = "+ k);
}
public static void main(String [] argv)
{
ParallelTest test = new ParallelTest();
}
}
答案 2 :(得分:8)
基于mlaw建议,添加CountDownLatch。 添加chunksize以减少submit()。
当测试400万个项目阵列时,这个 对于()开启,顺序为5倍加速 我的Core i7 2630QM CPU。
public class Loop {
public interface Each {
void run(int i);
}
private static final int CPUs = Runtime.getRuntime().availableProcessors();
public static void withIndex(int start, int stop, final Each body) {
int chunksize = (stop - start + CPUs - 1) / CPUs;
int loops = (stop - start + chunksize - 1) / chunksize;
ExecutorService executor = Executors.newFixedThreadPool(CPUs);
final CountDownLatch latch = new CountDownLatch(loops);
for (int i=start; i<stop;) {
final int lo = i;
i += chunksize;
final int hi = (i<stop) ? i : stop;
executor.submit(new Runnable() {
public void run() {
for (int i=lo; i<hi; i++)
body.run(i);
latch.countDown();
}
});
}
try {
latch.await();
} catch (InterruptedException e) {}
executor.shutdown();
}
public static void main(String [] argv) {
Loop.withIndex(0, 9, new Loop.Each() {
public void run(int i) {
System.out.println(i*10);
}
});
}
}
答案 3 :(得分:5)
Fork join framework in Java 7用于并发支持。但我不知道Parallel.For
的确切等价物。
答案 4 :(得分:5)
以下是我对此主题的贡献https://github.com/pablormier/parallel-loops。用法非常简单:
Collection<String> upperCaseWords =
Parallel.ForEach(words, new Parallel.F<String, String>() {
public String apply(String s) {
return s.toUpperCase();
}
});
也可以更改一些行为方面,比如线程数(默认情况下它使用缓存的线程池):
Collection<String> upperCaseWords =
new Parallel.ForEach<String, String>(words)
.withFixedThreads(4)
.apply(new Parallel.F<String, String>() {
public String apply(String s) {
return s.toUpperCase();
}
}).values();
所有代码都是self-contained in one java class,并且没有比JDK更多的依赖项。我还建议您使用Java 8
以功能方式检查the new way to parallelize答案 5 :(得分:4)
更简单的选项是
// A thread pool which runs for the life of the application.
private static final ExecutorService EXEC =
Executors.newFixedThreadPool(SOME_NUM_OF_THREADS);
//later
EXEC.invokeAll(tasks); // you can optionally specify a timeout.
答案 6 :(得分:3)
Parallel.For有一个等价物可用作java扩展。它被称为Ateji PX,它们有一个你可以玩的免费版本。 http://www.ateji.com/px/index.html
它与parallel.for完全相同,看起来类似于。
For ||
更多关于维基百科的例子和解释: http://en.wikipedia.org/wiki/Ateji_PX
Java IMO中的封闭事物
答案 7 :(得分:3)
同步通常会导致并行for循环的加速。因此,并行for循环通常需要其私有数据和减少机制来减少所有线程私有数据以包含单个结果。
所以我通过缩减机制扩展了Weimin Xiao
的Parallel.For版本。
public class Parallel {
public static interface IntLoopBody {
void run(int i);
}
public static interface LoopBody<T> {
void run(T i);
}
public static interface RedDataCreator<T> {
T run();
}
public static interface RedLoopBody<T> {
void run(int i, T data);
}
public static interface Reducer<T> {
void run(T returnData, T addData);
}
private static class ReductionData<T> {
Future<?> future;
T data;
}
static final int nCPU = Runtime.getRuntime().availableProcessors();
public static <T> void ForEach(Iterable <T> parameters, final LoopBody<T> loopBody) {
ExecutorService executor = Executors.newFixedThreadPool(nCPU);
List<Future<?>> futures = new LinkedList<Future<?>>();
for (final T param : parameters) {
futures.add(executor.submit(() -> loopBody.run(param) ));
}
for (Future<?> f : futures) {
try {
f.get();
} catch (InterruptedException | ExecutionException e) {
System.out.println(e);
}
}
executor.shutdown();
}
public static void For(int start, int stop, final IntLoopBody loopBody) {
final int chunkSize = (stop - start + nCPU - 1)/nCPU;
final int loops = (stop - start + chunkSize - 1)/chunkSize;
ExecutorService executor = Executors.newFixedThreadPool(loops);
List<Future<?>> futures = new LinkedList<Future<?>>();
for (int i=start; i < stop; ) {
final int iStart = i;
i += chunkSize;
final int iStop = (i < stop) ? i : stop;
futures.add(executor.submit(() -> {
for (int j = iStart; j < iStop; j++)
loopBody.run(j);
}));
}
for (Future<?> f : futures) {
try {
f.get();
} catch (InterruptedException | ExecutionException e) {
System.out.println(e);
}
}
executor.shutdown();
}
public static <T> void For(int start, int stop, T result, final RedDataCreator<T> creator, final RedLoopBody<T> loopBody, final Reducer<T> reducer) {
final int chunkSize = (stop - start + nCPU - 1)/nCPU;
final int loops = (stop - start + chunkSize - 1)/chunkSize;
ExecutorService executor = Executors.newFixedThreadPool(loops);
List<ReductionData<T>> redData = new LinkedList<ReductionData<T>>();
for (int i = start; i < stop; ) {
final int iStart = i;
i += chunkSize;
final int iStop = (i < stop) ? i : stop;
final ReductionData<T> rd = new ReductionData<T>();
rd.data = creator.run();
rd.future = executor.submit(() -> {
for (int j = iStart; j < iStop; j++) {
loopBody.run(j, rd.data);
}
});
redData.add(rd);
}
for (ReductionData<T> rd : redData) {
try {
rd.future.get();
if (rd.data != null) {
reducer.run(result, rd.data);
}
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
}
executor.shutdown();
}
}
这是一个简单的测试示例:使用非同步映射的并行字符计数器。
import java.util.*;
public class ParallelTest {
static class Counter {
int cnt;
Counter() {
cnt = 1;
}
}
public static void main(String[] args) {
String text = "More formally, if this map contains a mapping from a key k to a " +
"value v such that key compares equal to k according to the map's ordering, then " +
"this method returns v; otherwise it returns null.";
Map<Character, Counter> charCounter1 = new TreeMap<Character, Counter>();
Map<Character, Counter> charCounter2 = new TreeMap<Character, Counter>();
// first sequentially
for(int i=0; i < text.length(); i++) {
char c = text.charAt(i);
Counter cnt = charCounter1.get(c);
if (cnt == null) {
charCounter1.put(c, new Counter());
} else {
cnt.cnt++;
}
}
for(Map.Entry<Character, Counter> entry: charCounter1.entrySet()) {
System.out.println(entry.getKey() + ": " + entry.getValue().cnt);
}
// now parallel without synchronization
Parallel.For(0, text.length(), charCounter2,
// Creator
() -> new TreeMap<Character, Counter>(),
// Loop Body
(i, map) -> {
char c = text.charAt(i);
Counter cnt = map.get(c);
if (cnt == null) {
map.put(c, new Counter());
} else {
cnt.cnt++;
}
},
// Reducer
(result, map) -> {
for(Map.Entry<Character, Counter> entry: map.entrySet()) {
Counter cntR = result.get(entry.getKey());
if (cntR == null) {
result.put(entry.getKey(), entry.getValue());
} else {
cntR.cnt += entry.getValue().cnt;
}
}
}
);
// compare results
assert charCounter1.size() == charCounter2.size() : "wrong size: " + charCounter1.size() + ", " + charCounter2.size();
Iterator<Map.Entry<Character, Counter>> it2 = charCounter2.entrySet().iterator();
for(Map.Entry<Character, Counter> entry: charCounter1.entrySet()) {
Map.Entry<Character, Counter> entry2 = it2.next();
assert entry.getKey() == entry2.getKey() && entry.getValue().cnt == entry2.getValue().cnt : "wrong content";
}
System.out.println("Well done!");
}
}
答案 8 :(得分:1)
我有一个更新的Java Parallel类,可以做Parallel.For,Parallel.ForEach,Parallel.Tasks和分区并行循环。源代码如下:
使用这些并行循环的示例如下:
public static void main(String [] argv)
{
//sample data
final ArrayList<String> ss = new ArrayList<String>();
String [] s = {"a", "b", "c", "d", "e", "f", "g"};
for (String z : s) ss.add(z);
int m = ss.size();
//parallel-for loop
System.out.println("Parallel.For loop:");
Parallel.For(0, m, new LoopBody<Integer>()
{
public void run(Integer i)
{
System.out.println(i +"\t"+ ss.get(i));
}
});
//parallel for-each loop
System.out.println("Parallel.ForEach loop:");
Parallel.ForEach(ss, new LoopBody<String>()
{
public void run(String p)
{
System.out.println(p);
}
});
//partitioned parallel loop
System.out.println("Partitioned Parallel loop:");
Parallel.ForEach(Parallel.create(0, m), new LoopBody<Partition>()
{
public void run(Partition p)
{
for(int i=p.start; i<p.end; i++)
System.out.println(i +"\t"+ ss.get(i));
}
});
//parallel tasks
System.out.println("Parallel Tasks:");
Parallel.Tasks(new Task []
{
//task-1
new Task() {public void run()
{
for(int i=0; i<3; i++)
System.out.println(i +"\t"+ ss.get(i));
}},
//task-2
new Task() {public void run()
{
for (int i=3; i<6; i++)
System.out.println(i +"\t"+ ss.get(i));
}}
});
}
答案 9 :(得分:1)
对于我来说,我发现ForkJoinPool和IntStream很有帮助(线程数量有限的并行For)。
C#:
static void mathParallel(int threads) {
ForkJoinPool pool = new ForkJoinPool(threads);
pool.submit(()-> IntStream.range(0, partitions).parallel().forEach(i -> {
partitionScores[i] = Math.sin(3*i);
}));
pool.shutdown();
while (!pool.isTerminated()){
}
}
和Java等效:
{{1}}
答案 10 :(得分:0)
这是我在Java 7及以下版本中使用的。
对于Java 8,您可以使用forEach()
[UPDATE]
平行班:
private static final int NUM_CORES = Runtime.getRuntime().availableProcessors();
private static final int MAX_THREAD = NUM_CORES*2;
public static <T2 extends T, T> void For(final Iterable<T2> elements, final Operation<T> operation) {
if (elements != null) {
final Iterator<T2> iterator = elements.iterator();
if (iterator.hasNext()) {
final Throwable[] throwable = new Throwable[1];
final Callable<Void> callable = new Callable<Void>() {
boolean first = true;
@Override
public final Void call() throws Exception {
if ((first || operation.follow()) && iterator.hasNext()) {
T result;
result = iterator.next();
operation.perform(result);
if (first) {
synchronized (this) {
first = false;
}
}
}
return null;
}
};
final Runnable runnable = new Runnable() {
@Override
public final void run() {
while (iterator.hasNext()) {
try {
synchronized (callable) {
callable.call();
}
if (!operation.follow()) {
break;
}
} catch (Throwable t) {
t.printStackTrace();
synchronized (throwable) {
throwable[0] = t;
}
throw new RuntimeException(t);
}
}
}
};
final ExecutorService executor = Executors.newFixedThreadPool(MAX_THREAD);
for (int threadIndex=0; threadIndex<MAX_THREAD && iterator.hasNext(); threadIndex++) {
executor.execute(runnable);
}
executor.shutdown();
while (!executor.isTerminated()) {
try {
Thread.sleep(0,1);
} catch (InterruptedException e) {
e.printStackTrace();
throw new RuntimeException(e);
}
}
if (throwable[0] != null) throw new RuntimeException(throwable[0]);
}
}
}
public interface Operation<T> {
void perform(T pParameter);
boolean follow();
}
示例
@Test
public void test() {
List<Long> longList = new ArrayList<Long>();
for (long i = 0; i < 1000000; i++) {
longList.add(i);
}
final List<Integer> integerList = new LinkedList<>();
Parallel.For((Iterable<? extends Number>) longList, new Parallel.Operation<Number>() {
@Override
public void perform(Number pParameter) {
System.out.println(pParameter);
integerList.add(pParameter.intValue());
}
@Override
public boolean follow() {
return true;
}
});
for (Number num : integerList) {
System.out.println(num);
}
}